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ABSTRACT 

Land Use/Land Cover (LULC) changes induced by urbanisation constitute a key driver 

in surface thermal properties modification, which intensifies Land Surface Temperature 

(LST) in rapidly urbanising areas. The aim of this research was to analyse the patterns of 

urban LULC changes induced LST and its public health implications in Ouagadougou 

and Bobo-Dioulasso, Burkina Faso. For this purpose, Landsat images were used to map 

LULC for four selected years including 2003, 2009, 2015 and 2021, using Random 

Forest, Support Vector Machine and Gradient Tree Boost algorithms in the Google Earth 

Engine (GEE) environment. MODIS/Aqua LST and ERA5-Land average air temperature 

datasets with Mann Kendall trend test were used to assess the LST and air temperature 

trends respectively. Aggregation was used in combination with correlation to establish 

the link between LULC and LST at the pixel level. Also, correlation analysis was 

employed to determine the relationship between LST and air temperature, and between 

LST and selected public diseases. Markov chain and Multiple linear regression models 

were employed to predict future LULC and LST. The study revealed that Ouagadougou 

experienced more rapid changes in LULC than Bobo-Dioulasso, with a maximum annual 

change intensity of 3.61 percent recorded between 2015 and 2021 as against 2.22 per cent 

in Bobo-Dioulasso for the period 2009 – 2015. The transition of changes was towards 

built-up areas, which gains targeted bare land and agricultural lands in both cities. This 

situation has led to the increase of built-up surface in Ouagadougou by 78.12 per cent, 

while 42.24 per cent of the agricultural land area was lost. However, in Bobo-Dioulasso, 

the built-up area has increased far more by 140.67 percent and the agricultural land areas 

experienced a gain of 1.38 per cent compared with the 2003 baseline. Both cities 

experienced an increasing trend in LST and air temperature (z value >0) with a greater 

increase in Ouagadougou than Bobo-Dioulasso, due to urbanisation. The global yearly 

trend was supported by the March-April-May (MAM) season, which shows a statistically 

significant trend in Ouagadougou (p-value=0.009). The LST and air temperature 

exhibited a stronger correlation in Bobo-Dioulasso (R=0.83) than in Ouagadougou 

(R=0.76). In the study area, at the pixel level, the built-up proportion showed a moderate 

positive correlation with the LST (0.44≤R≤0.64 in Ouagadougou, 0.49≤R≤0.61 in Bobo-

Dioulasso), while the non-built-up proportion was negatively correlated with LST (-

0.41≤R≤-0.6 in Ouagadougou, -0.49≤R≤-0.59 in Bobo-Dioulasso). The difference in LST 

between a fully built-up pixel and a fully non-built-up pixel decreased from 2003 to 2021 

in both cities indicating that the LST increased in all LULC types throughout the study 

period. The contribution of the non-built-up class to urban cooling was lower in Bobo-

Dioulasso (between 0.29°C and 1.39°C) than in Ouagadougou (between 0.74°C and 

1.94°C). The research also found that malaria and dengue fever had a weak correlation 

with LST (R<0.4), while meningitis presented a moderate correlation in the districts of 

Dafra (R=0.56) and Konsa (R=0.49) in Bobo-Dioulasso) and Sig-Noghin (R=0.66) in 

Ouagadougou. Only the district of Do in Bobo-Dioulasso showed a strong correlation 

(R=0.86) with the LST. With projected increases in LST under the Business-as-usual 

scenario, the prevalence of temperature-related diseases may increase. In summary, the 

study area experienced an increase in human footprint, which contributed to the 

intensification of the LST which is an environmental threat to urban dwellers. These 

findings constitute a useful decision support for sustainable urban planning. It is therefore 

recommended that afforestation should be vigorously pursued at all governmental levels 

to step down the LST in the two cities. While sponsored research should be carried out to 

deepen the knowledge on LST and epidemic in the nation. 
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CHAPTER ONE 

1.0. INTRODUCTION 

 

1.1. Background to the Study 

Urbanisation is often characterized by changes in lifestyle, increased consumption, and 

fossil fuel usage, which contribute to alter the environment, increase global warming, and 

cause climate change (Yuen and Kumssa, 2011; Sannigrahi et al., 2017). The exponential 

growth of urbanisation, in the context of climate change, presents significant problems to 

city authorities and urban managers in the planning of sustainable and prosperous cities 

(Fonseka et al., 2019), because the demand for land is increasing together with unplanned 

development. Rapid urbanisation is expected to result in 6.68 billion urban dwellers by 

the year 2050 (Bocquier, 2005) and cities will be exposed to climate change effects, 

including Greenhouse Gas (GHG)-induced radiative forcing and localised effects from 

urbanisation such as the Urban Heat Island (McCarthy et al., 2010). 

The global temperature of the earth is rising due to the GHG radiative forcing and the 

effects of urbanisation (McCarthy et al., 2010). Principally, the Land Surface 

Temperature (LST), defined as the temperature near or at the land surface (Ndossi and 

Avdan, 2016), in densely urbanised areas is generally higher. This situation is due to the 

absorption of incoming solar radiation which keeps the surface warmer during night-time 

in comparison to the surrounding areas which cool quickly after the sun sets. These areas 

are hotter because of materials like concrete that soak up and retain heat unlike trees, soil 

and other permeable surfaces. This phenomenon is known as the Surface Urban Heat 

Island (SUHI) effect (Estoque and Murayama, 2017). LST and its associated UHI effect 

are increasingly gaining scientists’ attention in recent years. This is because, as an 

important indicator for monitoring vegetation, urban climate and changes in built-up areas 
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(Kayet et al., 2016), these variables are closely related to the widely studied urbanisation 

phenomenon. Given the differences in Land Use/Land Cover (LULC) units across the 

urban setting and their varied thermal characteristics, LST is higher in densely built-up 

areas (Sannigrahi et al., 2017), and lower in areas covered with vegetation and water 

(Fonseka et al., 2019). Accordingly, since the rate of urbanisation in Africa is arguably 

the highest (Schug et al., 2018) in the world and is projected to reach 55% of the total 

population by 2050 (Güneralp et al., 2017), a proportional increase in surface temperature 

is anticipated in most African urban areas. This is especially true for cities in low-income 

countries such as Burkina Faso where the most rapid urbanisation is expected between 

now and 2050 (United Nations, 2019).  

Besides the anthropogenic LULC activities, another determinant of LST change is 

topography. For example, terrain conditions including elevation, aspect, and slope can 

affect the surface temperature (Peng et al., 2020). While the influence of topography on 

the LST varies according to the amount of downward solar radiation reaching the surface 

(Peng et al., 2020), it can help explain the spatial variations of LST when combined with 

LULC (Estoque and Murayama, 2017). 

Changes in LST in urban areas as determined by anthropogenic LULC changes and 

topographical variations are often associated with different public health issues. The 

urban population’s exposure to the risk of temperature-related diseases is often intensified 

(Zhang et al., 2020), due to the UHI phenomenon and climate change (Estoque et al., 

2020). As a result, spatial modelling and thermal remote sensing data and methods are 

becoming popular in environmental epidemiology and public health studies (White-

newsome et al., 2013). For example, geospatial technologies provide valuable resources 

for emergency response to planners and public health practitioners in identifying areas 

that are most at risk of temperature-related diseases. In this era of climate change 
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associated with global health pandemics, there is a growing interest in the impacts of 

environmental conditions on public health. 

Globally, the impacts of environmental conditions on LST have received varied scientific 

inquisition in different contexts. For instance, a study in Italy established that topographic 

elements and solar radiation have influence on the surface temperature of an area 

(Stroppiana et al., 2014). In China, Jiang and Tian (2010) showed that LULC changes 

play a determinant role in LST trends in urban areas. In the African region, few studies 

on that subject have been conducted. Indeed, a research on the link between LST, UHI 

and temperature-related risks in Ghana showed that the risk is significantly elevated in 

areas where the LST is high (Stemn and Kumi-Boateng, 2020). In Burkina Faso, a study 

on the role of green infrastructure in LST mitigation in Bobo-Dioulasso found that 

vegetation has a cooling effect on the LST (Di Leo et al., 2016). These studies 

demonstrated that LST strongly depends on the human footprint in the landscape in such 

a way that where the natural areas remain dominant, LST is found to be low. 

Although LULC activities interact in complex ways with topography to modify the LST 

in urban centres (Peng et al., 2020), their parallel and coupled impacts have not been 

much explored in Burkina Faso. Secondly, not much is known about the impacts of LST 

on public health in the country. Thus, this study has a dual purpose; first, to unveil the 

extent to which LST values observed in Ouagadougou and Bobo-Dioulasso are 

influenced by LULC changes and topography, and second, to ascertain the public health 

implications of LST in the two cities.  
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1.2. Statement of the Research Problem 

Land Use/Land Cover (LULC) change is one of the causes of global climatic and 

environmental change (Faichia et al., 2020), which lead to landscape degradation and 

affects urban land surface (Hamad et al., 2018). As urban areas develop, there are changes 

in landscape such as replacement of open spaces and vegetation by houses, roads, and 

other urban infrastructure, which transform the permeable and moist surfaces into 

impermeable and dry ones (Kundu and Kumar, 2016). The establishment of these 

impervious surfaces causes the land surface temperature to rise due to their high thermal 

storage capacity (Mccartney and Mehta, 2020). Indeed, the impervious surfaces are 

water-resistant, impede evapotranspiration (Alavipanah et al., 2015) and do not allow 

natural cooling of the environment (Liu and Zhang, 2011; Asgarian et al., 2015), because 

these features absorb and store more of the incoming short wave radiation and later emit 

them leading to increasing temperature (Patra et al., 2018).  

The world’s total urban population will reach 6.7 billion, and correspondingly about 0.6 

to 1.3 million square kilometres of land will be converted into urban areas (Huang et al., 

2019b). Although urbanisation phenomenon is a global phenomenon, the most dramatic 

increases in the share of urban population are in Africa and other developing countries in 

the global south (Cohen, 2006; Schug et al., 2018; Hackman et al., 2020; Stemn and 

Kumi-Boateng, 2020) . However, SUHI intensity (and its related extreme heat events that 

can be dangerous to health, even fatal), which is believed to be increasing in fast-growing 

cities, has received less attention. 

The thermal properties of the urban surface are modified due to the LULC changes and 

the immediate consequence is the increase in the intensity of UHI (Sannigrahi et al., 2017) 

because the urban canopy has become more complex with a diversity of composition, and 

arrangement of canopy elements including buildings and other impervious elements. 
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Indeed, the urban canopy energy budget is such a way that the Latent Heat Fluxes (LHF) 

and the albedo of the surface are reduced, while the Sensible Heat Fluxes (SHF) rise and 

contribute to increase the urban environment LST (Xia et al., 2017). 

The increase of LST, associated with the air temperature rise is the source of risk of 

temperature-related morbidity and mortality in the urban area, affecting mainly the 

children, the old people and those with existing health conditions (Mccartney and Mehta, 

2020). The UHI intensifies during periods of heatwaves (Alavipanah et al., 2015) and 

contributes to increased electricity demand for cooling and consequently increased air 

pollution by the emission of GHG through the fossil fuel-based electricity production 

(Tariq and Shu, 2020) and affect human health. The thermal comfort of individuals living 

in the urban zone is disturbed and they are exposed to heat-related diseases and morbidity 

due to the combined effects of UHI and heat waves (Alavipanah et al., 2015).  

In Burkina Faso, the combined effects of natural growth of population and positive net 

migration (INSD, 2022a) have placed the main cities of Ouagadougou and Bobo-

Dioulasso in continuous urban expansion (Sory, 2013). On the demographic level, the 

total population has evolved, and the densities have exponentially increased in the two 

cities. For instance, Ouagadougou recorded the highest population density with an 

increase of 1.54 inhabitants per square kilometre between 2006 (2,847.9 inhabitants per 

square kilometre) and 2019 (4,385.5 inhabitants per square kilometre) (INSD, 2022c). In 

Bobo-Dioulasso, although lesser than Ouagadougou, the population density doubled 

between 2006 (271 inhabitants per square kilometre) and 2019 (553,5 inhabitants per 

square kilometre) (INSD, 2022b). This situation, in addition to the unprecedented land 

speculation occurring in the two cities, leads to a spatial expansion characterized by the 

development of informal housing and consequently the multiplication of impervious 

surfaces (built-up, roads, pavement) to the detriment of natural vegetation and water 
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bodies. In Ouagadougou for instance, because of the increasing trend of informal housing 

in the urban fringe, rapid sprawl and leap development is taking place, resulting in 

significant urban restructuration processes (Hauer et al., 2018). Indeed, due to the rapid 

evolution of anthropogenic activities, the natural areas of the cities have experienced 

significant degradation due to ongoing conversion for the construction of buildings, and 

farming activities. Within  Ouagadougou for instance, only the “Bangr-Weogo” park, a 

few green spaces, and a small portion of the urban green belt remain vegetated areas 

(Soma, 2015).  

This situation added to the effects of climate change considerably reduces the cooling 

effects of vegetation on the urban environment and consequently increases atmospheric 

temperature, which is dangerous to the human health (Jaiye, 2020; Zhang et al., 2020). 

Consequently, the increasing environmental temperatures is responsible for heat cramps 

and exhaustion (Jaiye, 2020). The high near-surface air temperatures, which result from 

high LST are associated with increased mortality (particularly in children) in Burkina 

Faso (IPCC, 2014). Consequently, it has become important to understand how past and 

current urban expansion affect LST and how LST influences the geographic distribution 

of temperature-related diseases.  

In the past decade, using optical and thermal remote sensing datasets, many studies have 

investigated LULC change and the relationship between the LST and the surface 

biophysical indices in different areas of Asia and Europe (Liu and Zhang, 2011; Kumar 

et al., 2012; Alavipanah et al., 2015; Boori et al., 2015; Jain et al., 2019; Ramaiah et al., 

2020). In Africa, particularly West Africa, only a few have used thermal remote sensing 

techniques to assess LST in urban areas (Ogunjobi et al., 2018; Eresanya et al., 2019; 

Stemn and Kumi-Boateng, 2020). To compute the LST, these studies focused on 

diachronic analyses between two, three or four periods without a clear comparative 
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analysis between several months of the year to set the suitable period for LST assessment, 

as it should be done under tropical conditions. Also, even at the global level, the 

implication of surface temperature on public health is not well known (White-newsome 

et al., 2013), despite the plethora of literature on LULC and LST. Thus, in Burkina Faso, 

very little work has been done on LULC change impacts on surface temperature (Di Leo 

et al., 2016). However, not much work has been conducted on how the LST pattern over 

the study area impacts public health. Specifically, this research used time-series satellite 

imagery together with ancillary data and socio-economic data to determine the patterns 

of LULC changes induced LST in the cities of Ouagadougou and Bobo-Dioulasso, 

Burkina Faso and assess its impacts on public health. 

 

1.3. Research Questions 

The research attempts to answer the following questions: 

i. What are the major Land Use/Land Cover changes in Ouagadougou and 

Bobo-Dioulasso from 2003 to 2021? 

ii. What is the trend of the meteorological and satellite-based thermal emission 

data between 2003 and 2021 in the two cities? 

iii. What is the correlation between land surface temperature and the urban Land 

Use/Land Cover dynamics in the two cities? 

iv. To what extent is the Land surface temperature related to the distribution of 

temperature-related diseases in the two cities? 

v. What will be the future trend of Land Use/Land Cover changes and land 

surface temperature in the two cities? 
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1.4. Aim and Objectives of the Study 

This study was aimed at analysing the influence of Land Use/Land Cover changes and 

topography on land surface temperature and its implications on public health in the cities 

of Ouagadougou and Bobo-Dioulasso, Burkina Faso. This aim is in line with the 

Sustainable Development Goal (SDG) number 11: “Sustainable cities and communities”. 

This is to be achieved through the following objectives: 

i. assess the major Land Use/Land Cover changes in Ouagadougou and Bobo-

Dioulasso between 2003 and 2021; 

ii. carry out comparative trend analysis of the meteorological and satellite-based 

thermal emission data from 2003 to 2021 between the two cities; 

iii. determine the correlation between land surface temperature and urban Land 

Use/Land Cover changes in the two cities; 

iv. assess the relationship between temperature-related diseases and land surface 

temperature in the two cities; and 

v. carry out future projection of Land Use/Land Cover and land surface 

temperature in the two cities. 

 

1.5. Justification for the Study 

Previous studies have used data from series of satellites platforms such as Landsat, 

Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) coupled with observation or 

gridded (ground observation data combined with satellite data) air temperature datasets 

to derive land surface temperature. This research uses satellite data and reanalysis (ground 

observation data combined with model data) air temperature datasets to assess the trend 

in LST and its patterns regarding different LULC dynamics. 
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This research provides information on the trend in LULC units within the urban 

environment in Burkina Faso, their influence on the LST and the consequences on urban 

cooling. This could generate much needed data to support municipal authorities in 

planning for better mitigation and adaptation measures that can improve the well-being 

of the urban population. Burkina Faso is a Sahelian country with high urban temperatures. 

Thus, this study will support urban planners and decision makers by providing 

information on the types of LULC that increase the heat capacity of the urban surface, for 

a better sustainable land use policy development.  

This research contributes, in the country level, to the achievement of the United Nations 

Sustainable Development Goals (SDG) 11 on “Sustainable cities and communities”; 13 

on “Climate action”; and 15 on “Life on land”. Indeed, the implementation of sustainable 

land use policy including building codes policy, green spaces development, open spaces 

development, blue infrastructures development can play a key role in climate change 

adaptation and mitigation in urban areas. This could then contribute to improve the 

thermal comfort for a better urban liveability.  

This research builds on the existing approaches to perform a time series analysis of the 

LST and LULC using a cloud computing platform, Google Earth Engine (GEE). The 

findings could be a valuable addition to the literature on applied climatology and 

particularly the use of GEE in LULC analysis and climatic data extraction. It could also 

strenghten the knowledge in terms of LULC changes impact on LST patterns in the 

African region. The use of a long-term dataset with a time step of one year in this study 

could show the annual dynamic of urban land surface temperature as well as air 

temperature. This could bring out a clear understanding of the spatio-temporal patterns 

and linkages of the two variables for further research on urban climate modelling. 
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1.6. Study Area Description 

1.6.1. Geographical location of the study areas 

The research was conducted in Ouagadougou and Bobo-Dioulasso, the first two largest 

cities of Burkina Faso. Ouagadougou is the political and administrative capital and is 

within the province of Kadiogo in the Centre Region. Bobo-Dioulasso, the economic 

capital of Burkina Faso, belongs to the province of Houet in the Hauts-Bassins Region. 

They are located between Longitude 1°41’31’’W and 1°21’05’’W and between Latitude 

12°12’42’’N and 12°30’14’’N; between Longitude 4°23’40’’W and 4°12’19’’W and 

between Latitude 11°06’26’’N and 11°17’27’’N, respectively. Ouagadougou covers an 

area of 970 square kilometres while Bobo-Dioulasso’s land mass in 1,779 square 

kilometres.  

In term of topography, Ouagadougou lies in the so-called central peneplain (lowland area) 

of Burkina Faso, with altitudes fluctuating between 272 and 368 metres above sea level. 

In Bobo-Dioulasso however, the altitudes range between 287 and 558 metres above sea 

level, indicating a relatively high land area compared to Ouagadougou. Figure 1.1 

presents the geographical location of the study sites: (a) shows West Africa inset Burkina 

Faso; (b) presents Burkina Faso showing administrative boundaries of districts inset 

Ouagadougou and Bobo-Dioulasso in red boxes; (c) is a Zoom of Ouagadougou showing 

elevation, roads, rivers and localities; (d) is a Zoom of Bobo-Dioulasso showing 

elevation, roads, rivers and localities. 
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Figure 1.1: Location of the Study Area. 

                                     Source: Ouedraogo et al. (2023) 

 

1.6.2. Climate  

The two cities are all situated in the Sudanian climatic zone (North Sudano-Sahelian for 

Ouagadougou and South Sudanian for Bobo-Dioulasso). As in the whole of West Africa, 

the climate over the study area depends on the Inter-Tropical Convergence Zone (ITCZ) 
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fluctuations, from south to north and vice versa (Byrne et al., 2018). The climate in the 

study sites is characterized by high temperatures and a uni-modal rainfall pattern with a 

peak in August. The rain falls usually between May and October (Figure 1.2), while the 

dry season, relatively long, ranges from November to April. Station data received from 

the National Meteorological Agency (ANAM) of Burkina Faso, showed that the average 

annual rainfall from 1980 to 2020 was 757.94 mm and 1,027.2 mm at the station of 

Ouagadougou and Bobo-Dioulasso, respectively. During the same period, the total 

amount of yearly rainfall varied from 571.4 to 1003 mm/year in Ouagadougou, whereas, 

in Bobo-Dioulasso, it ranged from 681.7 to 1,370.2 mm/year. These features show that 

Bobo-Dioulasso received more rainfall than Ouagadougou and consequently the amount 

of sensible heat radiated from the surface may be relatively low.  

 
Figure 1.2: Monthly Rainfall in Ouagadougou and Bobo-Dioulasso  

from 1980 to 2020 

              Source: ANAM (2021) 
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The temperatures fluctuated during the period and varied from one site to another. The 

monthly average temperature varied from 25.21°C to 33.26°C in Ouagadougou and from 

25.54°C to 31.05°C in Bobo-Dioulasso (Figure 1.3). In the two sites, high day time 

temperatures were observed in March, April and May, while low daytime temperatures 

were recorded in July, August and September. The night-time low temperatures were 

recorded between December and February due to the Harmattan winds.  

 
Figure 1.3: Monthly Air Temperature in Ouagadougou and Bobo-Dioulasso,  

from 1980 to 2020  

      Source: ANAM (2021) 

 

1.6.3. Vegetation, drainage and soils 

Ouagadougou falls in the North-Sudanian phytogeographical domain and is experiencing 

a significant degradation of vegetation cover due to the occupation of the space for 

housing purpose, farming, and the utilisation of biomass as a source of domestic energy. 

Only the protected forests of Bangr-Weogo, of the National Scientific and Technologic 

Research Centre, and a few green spaces scattered along the roads and houses form the 

vegetation of the city. The tree species common to the study area include Vitellaria 
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paradoxa, Lannea microcarpa, Mangifera indica, Khaya senegalensis, Acacia nilotica, 

Parkia biglobosa, Adansonia digitata, Faidherbia albida, Carapa procera. 

In terms of drainage, the settlement of Ouagadougou is set up in the Massili catchment. 

Given such geographic location, the city is drained by four main tributaries of the river 

Massili that flows from south to north. They are the central watercourse, the watercourse 

of Zogona, the watercourse of Mogho Naaba and the watercourse of Wemtenga. In the 

framework of urban development, these watercourses have been planned to facilitate the 

evacuation of runoff water during rainy season and improve the management of water for 

urban activities. In addition, there are three main urban dams, with a total capacity of 

5,235,500 cube metres (INSD, 2022c), which allow the storage of rain water in the city. 

Ouagadougou lies on less deep and nutrients deficient soils. There are two types of soils 

namely hydromorphic soils which evolve under the influence of the water from dams, 

and the less evolved soils, characterized by weak storage of runoff water (Soma, 2015). 

Unlike Ouagadougou, Bobo-Dioulasso belongs to the south-Sudanian phytogeographical 

vegetation domain. The vegetation is dominated by open forests and wooded savannahs. 

There are some protected forests such as Dienderesso forest, Kua forest, Kou forest and 

Kuinima forest (INSD, 2022b). The common trees species in the area are Antiaris 

Africana, Berlinia grandiflora, Carapa procera, Vitellaria paradoxa, Voacanga 

Africana, Lannea microcarpa, Khaya senegalensis, Acacia nilotica, Parkia biglobosa, 

Mangifera indica, Adansonia digitata. 

In terms of climate change, the forests are key ecosystems in Bobo-Dioulasso as they 

serve as a sink for the urban carbon capture and storage and contribute to cool the 

environment. The predominance of vegetation may lead to high evapotranspiration and 

then a relatively low surface temperature in the city compared to Ouagadougou. The 
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settlement is crossed from South to North by the River Kou, a tributary of the Mouhoun 

River. A number of water sources are encountered in the city, with the Guinguette being 

the most important (INSD, 2022b). Bobo-Dioulasso comprises four types of soils: 

hydromorphic soils, tropical ferruginous soils (with little leaching and on sandy 

materials), sandy-clay soils and sandy soils.  

 

1.6.4. Population and economic characteristics of the study area 

The population of Ouagadougou city has evolved from 60,000 inhabitants in 1960 to 

172.661 inhabitants in 1975, 441,514 inhabitants in 1985, 709,736 inhabitants in 1996, 

1,475,223 inhabitants in 2006 (INSD, 2006) and achieved 2,415,266 inhabitants (45.1% 

of the urbanisation rate) in 2019 (INSD, 2022a). Figure 1.4 shows a rapid growth of the 

population which increased by 39.25 times in 2019 compared to 1960. The main ethnical 

groups living in the area are the Mossi, Dioula, Bissa and Gurunsi. The economic 

activities are dominated by industry, commerce, services, agriculture and livestock in the 

fringe areas of the city.  

As for Bobo-Dioulasso, its population has evolved from 50,000 inhabitants in 1960 to 

115,063 inhabitants in 1975, 228,668 inhabitants in 1985, 309,771 inhabitants in 1996, 

489,967 inhabitants in 2006 (INSD, 2006) to reach 984,603 inhabitants, corresponding to 

16.9% of the urbanisation rate in 2019 (INSD, 2022a). Like Ouagadougou, the population 

figures exhibited an increasing trend in Bobo-Dioulasso. Indeed, the total population of 

the city increased by 18.69 times in 2019 compared to 1960, showing a lower growth than 

Ouagadougou (Figure 1.4). The main economic activities in Bobo-Dioulasso are services, 

commerce, agriculture, livestock, industry, hunting, fishing and handicraft. 
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Figure 1.4: Trend in Growth of the Urban Population in the Two Cities  

          Source: INSD (2022b), INSD (2022c) 

 

1.6.5. Urban development in the two cities 

The settlement of Ouagadougou has been established as the capital of the Mossi kingdom 

in 1441 and as the permanent residence of the Mogho Naba, the king of the Mossi, in 

1691. The settlement first developed around the royal palace, with the regrouping of 

certain villages that gave their names to certain current districts of the city, such as 

“Gounghin”, “Laarlé”, “Ouidi” (Soma, 2015). The administrative structuration of 

Ouagadougou has changed many times over the past few decades. In 1984, Ouagadougou 

was divided into five districts to facilitate the management and to improve access to 

public services by the citizens.  

Bobo-Dioulasso city is Burkina Faso’s second most populous settlement (Di Leo et al., 

2016) created around 1050. The area has been an administrative and military post for 

France and was the capital of Burkina Faso (former Upper Volta) until 1947. Bobo-

Dioulasso originated from a small village called Sya, which was conquered by France in 

1897. After the France occupation, Sya was changed into Bobo-Dioulasso, which means 

the house of the Bobo and Dioula. The French colonial government constructed, between 
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1926 and 1929, the city layout using a grid pattern structured in avenues and streets, 

squares and urban lots (Fourchard, 2003). This has laid the frame of the modern city 

centre and its LULC policies. New industries arrived in the city during 1980 and 1990s 

and contributed to shaping the economic sector. 

Up to 2009, Ouagadougou’s city comprised five districts, 30 sectors and 17 associated 

villages, whereas Bobo-Dioulasso had three districts and 25 sectors. In  December 2009, 

the National Assembly adopted a new law which culminated in the division of 

Ouagadougou into twelve districts and 55 sectors (INSD, 2022c); and Bobo-Dioulasso 

into seven districts, 33 sectors with 36 affiliated villages (INSD, 2022b). 

While the urban areas were spatially being restructured for close governance purposes, 

the authorities undertook several planning initiatives and interventions to develop formal 

housing for the citizens. From the colonial period to the independence and the revolution 

era, many formal housing units have been provided by the successive governments, but 

in insufficient number. For example, for a demand of 38.000 parcels in Ouagadougou, 

the governments provided only 10.800 parcels between 1960 and 1980. In addition to the 

usual housing development programmes, there were urban renewal projects such as the 

“project ZACA” area (an administrative and trade zone), the development of new modern 

housing areas such as “Ouaga 2000” (Southern part of Ouagadougou), “Bobo 2010” 

(Northern part of Bobo-Dioulasso), “Bassinko” (Northern part of Ouagadougou) and 

other private estates development in the two cities. Since 2009, housing development in 

the country is led by private real estates/land development companies, whose number has 

reached 275 in 2019 (Sory, 2019). The growth in housing development has caused the 

spatial expansion of the cities’ areas as showed by Figure 1.5. The spatial growth of the 

urban area was relatively slower in Bobo-Dioulasso than in Ouagadougou. 
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Figure 1.5: Spatial Expansion of the Urban Area Size in the Two Cities  

           Source: Soma (2015) 

 

1.7. Scope and Limitations of the Study 

1.7.1. Scope of the study 

The research has a temporal scope of 19 years (2003 - 2021). This interval is selected not 

only because the study intends to carry out a time series analysis of LULC change and 

LST, but also to fit with MODIS LST data availability over the area. Although MODIS 

Aqua LST products were available by mid-2002, 2003 was considered as the start year to 

have full year data (from January to December). 

The spatial scope of the study covers the metropolises of Ouagadougou and Bobo-

Dioulasso. Being the main urban centres of Burkina Faso, the two cities experience rapid 

urbanisation, in terms of spatial expansion and population growth, which causes the 

development of impervious lands to the detriment of natural vegetated and water body 

areas. The study concerns the urban and suburban areas of the two cities for the purposes 

of comparison between the two zones in regard to LST trends. Moreover, the two cities 

are located in the same climatic zones with slightly different meteorological and 

environmental conditions and are therefore well suited for comparative study. 
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In terms of content, the study focuses on LULC changes assessment, air temperature trend 

assessment, LST trend assessment and LST related diseases investigation. This research 

wholly depends on the existing datasets captured by ground observation stations or 

satellites platforms such as Landsat, MODIS Aqua and also on reanalysis datasets to map 

the LULC changes in the two cities and determine the LST and air temperature trends and 

relationship during the study’s chosen time span. Furthermore, it assesses the relationship 

between the LST and LULC changes on one hand, and between the air temperature in the 

other. It also investigates the link between selected temperature-related diseases and LST. 

 

1.7.2. Limitations of the study 

The limitations of this research include the non-availability of in situ measurements of 

LST datasets when the satellite passes to serve as control data for the accuracy assessment 

of the LST retrieved from MODIS Aqua satellite data. In addition, the coarse spatial 

resolution and the presence of missing data in MODIS daily LST, due to cloud cover, 

might introduce some uncertainties in the seasonal and yearly aggregated data. To 

mitigate these limitations, MODIS LST was considered as a proxy of the surface skin 

temperature over the study area, and a gap-filling method was used to compute the 

missing daily LST values. 

More so, the data on temperature-related diseases do not cover the whole temporal and 

spatial span of the research. While, the datasets have been aggregated at district level, 

rather than patient location based. Essentially, five years (2017 - 2021) monthly reported 

cases covering the Central Business District (CBD) areas of the different cities were used 

for the analyses. The study assumed that all patients recorded in a given district live within 

the geographical area of that district to proceed.  
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CHAPTER TWO 

2.0. LITERATURE REVIEW 

 

2.1. Conceptual Framework 

This sub-section describes the conceptual framework of the study. It analyses the 

concepts of urbanisation, temperature inversion, Land Use/Land Cover and Land 

Use/Land Cover change, Land Surface Temperature and Urban Heat Island. 

 

2.1.1. Concept of urbanisation  

Urbanisation is a complex socio-economic phenomenon that results in  a shift of 

population’s concentration from rural to urban settings and the consequent spatial and 

demographic changes occurring in the destination areas (Kuddus et al., 2020). In 2018, 

the United Nations estimated that about 4.2 billion people were living in urban areas, and 

this figure will reach 6.7 billion by 2050 (United Nations, 2018). In a similar way, the 

global urban settings area is expected to increase by about 0.6 to 1.3 million square 

kilometres between 2015 and 2050 (Huang et al., 2019a). The future global urban 

development is expected to slow down compared to that of the period 1950 – 2018. It is 

estimated that the urban annual growth rates will range between 1.7% and 1.3%, from 

2018 to 2030 and 2030 to 2050 respectively, against 2.2% during the period 1990 - 2018 

(United Nations, 2018).  

In Africa, the rate of urbanisation is arguably the highest in the world (Schug et al., 2018) 

and is projected to reach 55% of the total population by 2050 (Güneralp et al., 2017). The 

rapid trend of urbanisation in Africa has been confirmed by several authors (Güneralp et 

al., 2017; Schug et al., 2018; Hackman et al., 2020; Stemn and Kumi-Boateng, 2020) and 

is characterized by the increasing number of its megacities, cities and towns (Güneralp et 
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al., 2017). The main drivers of urban growth in Africa, in particular and the developing 

world in general, are the population growth (natural growth, and positive net migration), 

advances in medical sciences, global technological transformation and political change 

(Cohen, 2006), the combined effect of which is causing a spatial expansion of urban 

settlements towards the surrounding rural areas. The urbanisation patterns in most of the 

developing countries, like Burkina Faso, is inconsistent with the local plans and policies, 

resulting in the formation of slums where socio-economic facilities such as transportation, 

water and sanitation, health, and education are lacking (Rimal et al., 2018).  

 

2.1.2. Concept of temperature inversion 

In the Troposphere, temperature decreases with height under normal conditions; the 

higher we go, the lower the temperature and the lapse rate equals to 6.5°C/km. 

Temperature inversion or thermal inversion, is therefore the reversal of temperature’s 

normal behaviour in the troposphere where temperature increases with height (Nejad et 

al., 2023). Under inversion condition, a layer of cool air at the surface is overlain by a 

layer of warm air.  

It occurs in areas with clear skies, light wind, and in low places such as valleys. Inversions 

play a key role in cloud formation, precipitation and visibility level. An inversion acts as 

a blanket on the up-warding air from the layers below, and as a result, the convection 

produced by the heating of the air from below and diffusion of pollutants as well are 

limited to levels under the inversion. So, in areas with persistent low-level inversion 

occurs, convective clouds can not grow and visibility may be reduced due to the 

accumulation of dust and smoke particles. Inversion also affects daytime air temperature 

variations. Since daytime warming of air is mainly caused by land surface emission, if an 

inversion occurs in-low level, only a shallow layer of air will be heated and thus the 
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environmental temperature will rise astronomically. A schematic representation of an 

inversion is shown in Figure 2.1. Tbase: Temperature at the basis of inversion, Ttop: 

Temperature at the top of the inversion, Zbase: Height of the base of the inversion, Ztop: 

Height of the top of the inversion, DZinv: Temperature difference across the inversion, 

DTinv: Depth of the inversion and the temperature lapse rate within the inversion. 

 
Figure 2.1: Temperature Inversion Scheme  

          Source : (Iacobellis et al., 2009) 

 

2.1.3. Concepts of land cover, land use and land use/land cover change 

Land cover is defined as the observed natural and man-made features coverings of the 

earth’s surface (Giri, 2012). The major land cover types are forests, grassland, barren 

land, pavement, asphalt, water body including groundwater (Giri, 2012).  

Land use, in contrast, is defined as the way the biophysical attributes of the land are 

manipulated and the purpose for which the land is used (Giri, 2012). In other words, it 

refers to how the land is used by humans. According to this author, a land covered by 

vegetation can be a forest as seen from the ground or through remote sensing platforms, 

while the same area of forest can be used for production, recreation, conservation or for 

religious purposes. The land cover is also defined as the type of feature present on the 
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earth surface, while land use is related to anthropogenic activity or economic function 

associated with a piece of land (Congalton, 2015). Land cover data can be directly 

extracted from remote sensing images, whilst ancillary data is often needed to retrieve 

accurate land use information. According to the National Oceanic and Atmospheric 

Administration (NOAA), land cover data documents how much of a region is covered by 

forests, wetlands, impervious surfaces, agriculture, and other land and water types. Land 

use shows how people use the landscape whether for development, conservation, or 

mixed uses. The different types of land cover can then be managed and used differently. 

Land Use/Land Cover (LULC) change comprises two major types: LULC modification 

and LULC conversion. Indeed, a conversion is a change from one LULC category to 

another, while a modification denotes a change in condition within the same LULC 

category (Giri, 2012). An example of land-cover modification is forest degradation that 

may be due to change in phenology, biomass, forest density or flooding. With remote 

sensing data, it is easier to measure and monitor conversion than modification. 

Modification is usually a long-term process and may require multi-year and multi-

seasonal data for accuracy assessment. Land use may change without land-cover 

conversion or modification. However, once land use activities are practised in a particular 

area, land cover may change even if the land use remains unchanged; therefore, land-use 

is likely to cause land cover change.  

In Ouagadougou as well as Bobo-Dioulasso land cover is mainly characterized by 

vegetation, impervious surfaces (for example built-up, roads), water body. The 

encountered land uses are agricultural use, economic activities use, conservation (for 

example protected forests, rivers), housing (for example settlement). In sum, deducing 

from these definitions and examples, land cover can be considered as the physical cover, 

whereas land use is based on the function or the socio-economic purpose for which the 
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land is used. A piece of land can then have only one land cover (for example water body) 

but can have more than one land use (for example educational, conservation, tourism). 

In this research, the term Land Use/Land Cover is adopted, because it is a collective term 

meaning that the maps generated include both land use and land cover types (Reese, 

2011). Land use, being the expression of underlying anthropogenic driving forces, is the 

dominant source of land cover change which may have further biophysical impacts on 

the land surface (Meyer and Turner II, 1996). Therefore, LULC change concept is 

considered, because the thermal properties of the surface depend on the type of materials 

covering it. Though the way the population uses the land may influence the surface 

properties through the resulting waste from the household or the economic activities, the 

LULC change will result in a blacker or whiter surface which determines its reflectance 

capacity. The whiter the surface the higher the albedo and the lower the amount of 

incident radiation absorbed (Beucher, 2010). 

 

2.1.4. Concept of land surface temperature  

The Land surface temperature (LST) is a driving force in the exchange of long-wave 

radiation and turbulent heat flux at the interface between the surface and the atmosphere. 

It is considered as the radiometric temperature or skin temperature of the ground (Li et 

al., 2013). Radiometric and thermodynamic temperature are the same for homogeneous 

and isothermal surfaces (Becker and Zhao-Liang Li, 1995). Since surfaces with 

homogeneous pixels are rare in the nature, the radiometric temperature depends on the 

configuration of the surface materials, their emissivity and the electromagnetic spectrum 

channel used to measure it. 

Therefore, the LST depends on the incoming solar radiation, the albedo, the vegetation 

cover and the soil moisture. In most cases, it is a mixture of vegetation and other land 
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cover types temperatures. In that case, the LST shows quick variability because all types 

of land cover respond rapidly and differently to incident radiation changes due to cloud 

cover, aerosol load modifications and daytime illumination variation. 

The LST can also be defined as the surface radiometric temperature corresponding to the 

instantaneous field-of-view of the satellite sensor (Prata et al., 1995) or, particularly as 

the ensemble directional radiometric surface temperature. So, according to the Indian 

Institute of Remote Sensing (2016), the LST is the average skin temperature of the ground 

under the pixel scale mixed with different fractions of surface cover. For instance, for 

bare soil surface, LST is the soil surface temperature, while for densely vegetated area, 

LST is considered as the canopy surface temperature of the vegetation. 

 

2.1.5. Concept of urban heat island 

Within the urban setting, the LST varies between the core city and the surrounding areas 

in such a way that the urban core areas experience higher temperatures than the periphery. 

This persistence of heat within the inner-city compared to the fringe areas represents the 

Urban heat island (UHI). The changes in thermal properties of urban materials, and their 

spatial distribution are the key factors of UHI patterns (Mccartney and Mehta, 2020). 

Urban areas are dominated by low-albedo impervious surfaces such as buildings, roads 

and pavements, which absorb and store incoming solar radiation during daytime and 

release the heat at night-time leading to high temperature in the urban core. Thus, there 

are two types of UHI: the Surface Urban Heat Island (SUHI) and the Atmospheric Urban 

Heat Island (AUHI) (Kotharkar and Surawar, 2016). The SUHI is the radiative 

temperature difference between impervious and natural surfaces, measured by LST, based 

on thermal remote sensing. Its magnitude depends on sun intensity and LULC types and 

characteristics (Farina, 2012). The AUHI refers to the effects of temperature difference 
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in the canopy layer and the boundary layer. The canopy layer, being the layer of air from 

the surface to treetops or rooftops; the Canopy Layer Heat Island (CLHI) is measured by 

in situ sensors mounted on fixed meteorological stations (Badugu et al., 2022). However, 

the boundary layer extends from treetops or rooftops to where urban landscapes no longer 

influence the atmosphere. The Boundary Layer Heat Island (BLHI) is measured by tall 

towers, radiosondes and aircraft (Badugu et al., 2022).  

In the present research, the term Urban Heat Islands (UHI) was used to refer to SUHI, 

based on LST derived from MODIS Aqua satellite products. Thus, due to the urban LULC 

changes, resulting in the increase of impervious surfaces to the detriment of vegetated 

and water body areas, the urban runoff is increased and the evapotranspiration is reduced. 

This situation causes an unbalanced energy budget characterized by a reduction of the 

Latent Heat Flux (LHF) and albedo against an increase of the Sensible Heat Fluxes (SHF) 

(Xia et al., 2017). Indeed, the downwelling solar radiation associated with the high heat 

storage capacity of the urban materials increase the SHF and consequently intensify the 

LST and UHI. The increases in LST lead to rising air temperature over the urban 

environment which consequently affects the quality of life of city inhabitants by 

deteriorating the thermal comfort (Stemn and Kumi-Boateng, 2020) and causing 

temperature-related diseases. 

 

2.2. Theoretical Framework 

2.2.1. Theory of thermal radiation 

The earth energy budget is determined by the energy input from solar radiation and the 

energy loss by terrestrial thermal radiation (Schmittner, 2018). The sun emits radiation 

over a wide range of wavelengths forming the electromagnetic spectrum, which range 

from gamma rays with wavelengths of 3.10-3 nanometres (shorter wavelength and higher 
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energy) to radio waves with wavelengths of 300 meters (longer wavelength and lower 

energy). Different portions of the electromagnetic spectrum are of diverse relevance to 

earth observation. 

Human eyes are sensitive to the visible light that occupies a small part of the spectrum; 

from 390 nanometres to about 750 nanometres (Figure 2.2). Indeed, electromagnetic 

radiations are electric and magnetic waves that can travel through a vacuum and matter 

at the speed of light. The interaction between electromagnetic radiation and matter 

depends on the wavelength of the radiation. The molecules have different discrete energy 

states and they can transit from one state to another one by absorbing or emitting a photon 

at a wavelength that corresponds to that energy difference (Schmittner, 2018). Absorption 

of a photon leads to a transition from a lower to a higher energy state, while emission of 

a photon indicates a transition from a higher to a lower state. 

 

Figure 2.2.: Electromagnetic Spectrum 

                                      Source: Sparkes et al. (2011) 

 

The power of solar radiation reaching the top of the atmosphere is 1,370 w/m2 and is 

known as the solar constant, but only 338 W/m2 (25 per cent) reaches the earth’s surface. 

The sun’s radiative flux is maximum at a wavelength of 0.5 μm, at the centre of the visible 
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part of the spectrum (Figure 2.2). Solar radiation, by warming up the earth, is the driver 

for many chemicals, physical and biological phenomena in the atmosphere, on the ground 

and in the oceans. The thermal remote sensing is based on the theory that all objects with 

a temperature above zero kelvin (-273.15°C) emit radiation in all direction as 

electromagnetic waves and the amount of radiated energy and the wavelengths depend 

on the emissivity (ε) of the surface and its kinetic temperature (Prakash, 2000). 

Electromagnetic radiation is governed by the physical laws of radiative transfer, 

comprising Planck’s law, Stephan-Boltzmann law and Wien’s displacement law. 

 

2.2.1.1. Planck’s law of radiation 

The Physicist Max Planck determined experimentally the relationship between the 

radiative energy flux from a black body and its absolute temperature. He derived then 

Planck’s function describing the radiance emitted by a black body as presented in 

Equation (2.1). 

𝐵(𝜆, 𝑇) =
𝐶1

𝜆5 [exp(
𝐶2
𝜆𝑇

)−1]
           (2.1) 

Where 𝐵(𝜆, 𝑇) corresponds to the spectral radiance in (W/m2), T stands for the absolute 

temperature in Kelvin (K), λ is the wavelength in metres (m), ε is the emissivity, 𝐶1 is 

the first radiation constant (1.191 × 10-16 W/m2), and 𝐶2 the second radiation constant 

(1.439 × 10-2 m K). However, most natural objects are non-black bodies and the spectral 

emissivity ε is determined by the ratio between the radiance emitted by an object at 

wavelength λ and that emitted by a black body at the same temperature (Dash et al., 2002). 

For a non-black body (0 < ε < 1), Planck’s function is multiplied by ε, as shown in 

Equation (2.2). 

   𝐵(𝜆, 𝑇) =
𝜀𝐶1

𝜆5 [exp(
𝐶2
𝜆𝑇

)−1]
           (2.2) 
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Therefore, the amount of radiated energy depends on the wavelength and the temperature. 

The hotter the object, the shorter the wavelength and vice versa (Figure 2.3). 

 

Figure 2.3.: Distribution of Energy Radiated from Black Bodies  

at Various Temperatures  

     Source: Menzel, 2006 

 

2.2.1.2. Stephan-Boltzmann law of thermal radiation 

Stephan-Boltzmann’s law of thermal radiation is a derivative of Planck’s law. This 

radiation law states that the radiation flux of an object is proportional to the fourth power 

of its absolute temperature, as presented in Equation (2.3) (Schmittner, 2018). 

𝐸 = 𝜎𝑇4       (2.3) 

Where 𝐸 is the radiated energy in W.m-2, 𝜎 is the Stephan-Boltzmann constant (5.67x10-

8 W m-2 K-4) and 𝑇 is the absolute temperature of the object. 

For example, if we consider a black body with surface A temperature T1 which radiates 

to another black body with surface temperature T2 that completely surrounds it, this 
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second blackbody will totally absorb the incident energy and emit radiant energy that is 

proportional to T2
4 as expressed in Equation (2.4).  

𝐸 = 𝜎𝐴(𝑇1
4 − 𝑇2

4)      (2.4) 

For a non-black body that does not emit all the incident energy, ε is introduced in the 

equation to take into consideration the real nature of the radiant bodies. Therefore, the 

amount of heat transfer from a real body at temperature T1 which is surrounded by a black 

body at temperature T2 is given by Equation (2.5). 

𝐸 = 𝜎𝐴𝜀1(𝑇1
4 − 𝑇2

4)      (2.5) 

Thus, all objects emit radiation as a function of their temperature and hotter objects emit 

more electromagnetic radiation per unit surface area (Figure 2.4). 

 
Figure 2.4.: Evolution of Radiation Flux According to Temperature  

             Source: Data analysis (2023) 

 

2.2.1.3. Wien’s displacement law 

Wien’s displacement law is also a derivative of Planck’s law. It states that the wavelength 

of the peak radiation emitted by an object is inversely proportional to its absolute 

temperature, as shown in Equation (2.6). 
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𝜆𝑝𝑒𝑎𝑘 =
𝛼

𝑇
       (2.6) 

Where 𝜆𝑝𝑒𝑎𝑘 is the wavelength of the peak intensity of radiation, α is Wien constant 

(2,898) and 𝑇 is the absolute temperature of the object. 

Wien’s law can be used to predict the peak of a black body curve in case the temperature 

of the emitting object is known. In addition, Wien’s law informs that in reflectance remote 

sensing, short wavelengths in the visible and short-wave infrared domains are used, 

because the earth’s surface is cooler; whereas in thermal remote sensing, longer 

wavelengths from 2 to 14 micrometres are used because solar radiation is hotter (Tempfli 

et al., 2009).  

 

2.2.2. Theory of black-bodies and emissivity 

A black body is a theoretical object that absorbs and emits all incident energy; it is a 

perfect absorber and a perfect radiator, according to Planck’s law. The emissivity of such 

an object is by definition equal to 1 and naturally, true black bodies do not exist (Prakash, 

2000). Materials that absorb and radiate only a certain fraction, constant for all 

wavelengths, compared to a black body are called grey bodies. A grey-body curve is 

identical, in shape, to a black-body one, but the absolute values are lower as it does not 

radiate as perfectly as a black body (Tempfli et al., 2009). There are also the group of 

objects called selective radiators which radiate only a certain fraction of absorbed energy. 

A selective radiator may radiate perfectly in some wavelengths, whilst acting as a very 

poor radiator in other wavelengths.  

The fraction of energy radiated by an object, compared to a real black body, is called 

emissivity (𝜀𝜆). The emissivity for ice is 0.97, that for water is 0.96, and it varies between 

0.8 and 0.9 for snow; then water and ice are almost perfect black-bodies (Schmittner, 

2018). Equation (2.7) shows how to derive the emissivity. 
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𝜀𝜆 =
𝐵𝜆,𝑇

𝐵𝜆,𝑇
𝑏𝑏        (2.7) 

Where 𝐵𝜆,𝑇, is the spectral radiance of a real material at a given temperature, and 𝐵𝜆,𝑇
𝑏𝑏  is 

the spectral radiance of a black body at the same temperature.  

 

2.2.3. Theory of radiant and kinetic temperature 

The thermal infrared sensor records the spectral radiance reaching the sensor for a given 

wavelength. Given that the amount of energy radiated depends on the temperature and 

emissivity, a cold object with high emissivity can radiate as much energy as a 

considerably hotter object with low emissivity. Using Planck’s law, the ground 

temperature can directly be calculated considering the object as a black body that emits a 

certain amount of radiation in a given wavelength. This calculated temperature is the 

radiant temperature (𝑇𝑟𝑎𝑑) or brightness or Top of Atmosphere (TOA) temperature. In 

most cases, the radiant temperature is smaller than the true kinetic temperature (𝑇𝑘𝑖𝑛) 

which is measured using a contact thermometer on the ground. To calculate the true 

kinetic temperature from the radiant one, the emissivity must be determined and 

afterwards, apply Equation (2.8). 

𝑇𝑟𝑎𝑑 = 𝜀1/4𝑇𝑘𝑖𝑛      (2.8) 

For this research, the urban materials were considered as grey bodies which temperature 

is higher than zero kelvin. The theory of radiation, including Planck’s law and Stephan-

Boltzmann’s law and the theory of emissivity, were employed in the calculation of LST. 
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2.2.4. Theory of anthropogenic global warming 

Anthropogenic Global Warming (AGW) is a catastrophic climate scenario which states 

that projected and anticipated long-term increases in the temperature of the earth is mainly 

due to human activities (Stallinga and Khmelinskii, 2016). Since the mid-20th century, 

many climate scientists have gathered measurements on various weather phenomena (i.e., 

temperature, precipitation, atmospheric chemical composition) which showed that the 

earth’s climate has changed since the beginning of the geologic time and that the influence 

of anthropogenic activities since at least the industrial revolution has highly driven that 

change (Ouellette, 2008; Selin and Mann, 2021). 

Following the growing conviction of the scientific community on anthropogenic climate 

change, the Intergovernmental Panel on Climate Change (IPCC) was established in 1988 

by the World Meteorological Organization (WMO) and the United Nations 

Environmental Programme (UNEP) to provide governments at all levels with regular 

assessments of the scientific basis of climate change, its impacts and future risks, and 

options for adaptation and mitigation (IPCC, 2013b). By the early 2000s, the theory of 

AGW gained a high scientific consensus (Powell, 2017), because pieces of evidence from 

ground-based studies and satellites measurements of land surface and oceans revealed a 

temperature increase related to carbon dioxide (CO2) level rise since the pre-industrial 

time due to global economic and population growth (energy production, transport, 

industry, buildings, agriculture-forestry-and other land use) (Johnson et al., 2017). It is 

estimated that the CO2 level rose from 278 parts per million (ppm) during the pre-

industrial era to 315 ppm in 1957 and over 420 ppm in June 2022 (NOAA, 2022). 

Furthermore, the IPCC Fifth Assessment Report revealed that the period from 1880 to 

2012 experienced a global average temperature increase of 0.85°C (IPCC, 2013a) and the 

special report produced in 2018 mentioned that human activities have caused a global 
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warming of about 1.0°C above pre-industrial level, with a likely range of 0.8°C to 1.2°C 

(IPCC, 2019). The estimated AGW is increasing at 0.2°C per decade and it may reach 

1.5°C between 2030 and 2052 if the current trend persists. Based on the available 

evidence, this study sought to understand the influence of LULC changes, as an 

anthropogenic factor, on the trends in urban LST. 

In this study, since a perfect blackbody does not exist in natural state, the theory of 

emissivity is considered and the Planck’s law for grey body is used in the computation of 

the LST. Indeed, though the surface materials have different temperatures due mainly to 

the wavelength of incident radiation and the emissivity, the skin temperature of a surface 

is determined by integrating the emissivity value with the radiant or TOA temperature. 

Furthermore, the changing of LULC has implications on the land thermal properties by 

decreasing the albedo and then increasing the heat storage capacity and consequently 

extending the time range of longwave radiation emission. Based on the theory of 

anthropogenic global warming, the infrared outgoing longwave radiation contribute to 

enhance the atmospheric temperature given the greenhouse effect. In addition, LULC 

changes and LST are considered as the main variables causing urban ecology and 

liveability deterioration, and consequently affecting its sustainability (Figure 2.5).  
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Figure 2.5: Conceptual Framework for the Study 

                             Source: Author’s field survey (2021) 

 

2.3. Review of Related Studies 

2.3.1. Remote sensing and urban land use/land cover assessment 

Urban areas are growing in term of human population and spatial coverage. The 

assessment of this growth is important for better decisions making and implementation. 

Due to the low availability of reliable urbanisation data, remote sensing tools are 

increasingly used to assess the urban LULC changes (Schug et al., 2018). A study on land 

cover change quantification, within Ouagadougou’s metropolitan area, using Landsat 

imagery with support vector regression method found that the area went through a rapid 

urban expansion and densification. The methodology used can be replicated to other sites 

and the results may be strengthened by integration of new datasets including Sentinel 

images or the use of cloud computing platforms such as Google Earth Engine (GEE). 
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Relatedly, the temporal dynamics of urban growth was investigated in Kumasi, using 20-

years Landsat time series and employing Random Forest (RF) and Support Vector 

Machine (SVM) algorithms in GEE platform (Hackman et al., 2020). The results showed 

that the city has extended beyond its administrative boundaries. Fundamentally, the study 

demonstrated the capability of multi-temporal satellite images and GEE platform for 

quantifying the spatial and temporal dynamics of cities in developing countries.  

Landsat satellite images were also used to examine the changes in urban LULC and its 

implications for urban climate in India (Patra et al., 2018). The research found that the 

urban area has evolved in respect of concrete areas; and affected the urban climate by 

increasing the temperatures and reducing the rainfall. Moreover, urban LULC changes 

led to the absorption of high amount of heat, low evapotranspiration due to lack of 

vegetation, and low evaporation due to increased surface runoff (Porson et al., 2010; Fu 

and Weng, 2016). Despite the existence of numerous studies that used Remote Sensing 

images to assess quantitatively the LULC changes in urban settings, the utilization of 

multi-temporal satellite images combined with ground consistent reference samples 

remain less investigated, especially in Burkina Faso.  

 

2.3.2. Land surface temperature retrieval 

The lack of temperature stations to estimate LST over most of the urban areas makes its 

study challenging. The satellite data offer a proxy of LST through the thermal infrared 

images (Heat and Protocol, 2015). Satellites record a series of images over different 

spectral range and some of them focus on the longwave radiations emitted by the earth’s 

surface. So, the thermal sensors capture the radiation emitted from the ground to estimate 

the surface temperature, the surface emissivity, the soil moisture and the 

evapotranspiration (Sekertekin and Bonafoni, 2020). Many research works have treated 
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the subject of deriving LST through Satellite thermal images. Liu and Zhang (2011) 

combined data from Landsat and ASTER to assess the UHI in Hong Kong. The 

methodology employed used two algorithms including mono-window and split-window 

to determine the LST and correlate it with biophysical indices in the study area.  

The correlation between the LST and the Normalized Difference Vegetation Index 

(NDVI) and the Normalized Difference Built-up Index (NDBI) indicated that the 

vegetated lands weaken the UHI effect, while the built-up surfaces contribute to its 

increase. Stroppiana et al. (2014) used Moderate Resolution Imaging Spectroradiometer 

(MODIS) 8 days LST product at 1 km spatial resolution to establish the correlation 

between the LST, LULC, topography and solar radiation in Italy. The results showed that 

the topography and LULC types influence the surface temperature with its variability 

changing with the season. Satellite based LST was also used reliably to predict the 

average air temperature within areas with limited coverage in ground observation stations, 

by the means of mixed model regression technics (Kloog et al., 2014). 

Landsat thermal infrared data have been widely used to assess the surface temperature in 

various region of the world. Pal and Ziaul (2017) used Landsat TM, Landsat OLI and 

TIRS data to detect LULC and LST in India, while Mustafa et al. (2020) used Landsat 

time-series imagery to study the impact of urban renewal on LST changes, employing 

single-channel algorithm. Other studies also made a comparative analysis between LST 

from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 

that from Landsat. In most cases, the two sensors presented a similar pattern for different 

classes of surface temperature (Boori et al., 2015). The previous research studies have 

used various sensors data, such as ASTER, MODIS-Terra, Landsat TM, ETM+ and TIRS 

to assess the spatio-temporal trend of LST in diverse regions of the world. However, 

studies related to the assessment of LST in the study area are lacking. 
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2.3.3. Urban LULC changes and LST 

Many research works have been done all over the world on the relationship between 

LULC and LST (Kayet et al., 2016; Ali et al., 2017; Y. Deng et al., 2018; Fonseka et al., 

2019; Shi et al., 2021). For example, it was demonstrated that deriving LST from satellite 

images is a challenging task because of the atmospheric absorption and the different 

emissivity levels of earth surface materials (Boori et al., 2015). Most of the studies made 

a correlation analysis between LST and LULC through spectral indices such as NDVI 

and NDBI. The findings showed that the NDVI has a negative correlation with the LST, 

while the NDBI showed a positive correlation (Pal and Ziaul, 2017; Al Kafy et al., 2019; 

Barbierato et al., 2019; Guha et al., 2020; Ramaiah et al., 2020; Shi et al., 2021). The 

built-up surfaces affect the LST within vegetated areas, mainly during heatwaves, and 

then contribute to making the cooling effects of urban vegetation non-linear (Alavipanah 

et al., 2015). In a similar way, urban areas with high building and population densities 

combined with rapid landscape changes exhibit high LST values (Qiao et al., 2020). 

In West Africa, some authors have also investigated the relationship between the LULC 

and the LST (Lindén, 2011; Di Leo et al., 2016; Ogunjobi et al., 2018; Dissanayake et 

al., 2019a; Tafesse and Suryabhagavan, 2019; Stemn and Kumi-Boateng, 2020). For 

instance, Stemn and Kumi-Boateng (2020) examined the LST changes and its effects on 

UHI in Ghana, employing Multi-temporal Landsat images to assess the changes in the 

two variables in the area. The results showed that LST and UHI have increased because 

of the growth in urban settlements and mining activities. Di Leo et al. (2016) also 

investigated the role of green infrastructure in LST mitigation in Bobo-Dioulasso using 

Landsat imagery. The results showed a concommitant rising trend of urbanisation and 

LST in the city. The green infrastructure were proved to lower the LST compared to the 

surrounding impervious land. Furthermore, the impact of urban surface characteristics 
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and socio-economic variables on LST’s spatial variation  was investigated in Lagos City, 

Nigeria (Dissanayake et al., 2019a). The results showed that rapid urbanisation in the area 

and the economic development have changed the distribution of the LST.  

The previous research focused on the correlation between the LST and some spectral 

indices including NDVI and NDBI. A deeper analysis on the LST patterns regarding the 

LULC classes proportion and changes at the pixel scale was not performed, especially in 

the study area. 

 

2.3.4. LST and diseases prevalence 

In the context of climate change, the study of the link between climate parameters and the 

outbreak of some diseases are necessary to develop mitigation/adaptations strategies. 

Several research studies focused on the impact of climatic parameters and diseases 

incidence. Some studies have established that air temperature influences the development 

of the malaria and dengue vectors, the maturation temperatures of which vary between 

22°C (Plasmodium malariae) to 25°C (Plasmodium vivax), 30°C (plasmodium vivax) and 

35°C (Aedes. Aegypti, Aedes albopictus and Aedes polynesiensis) (Chastel, 2006). In the 

past, the prevalence of Plasmodium falciparum malaria epidemic occurred in countries 

such as Zambia, Colombia, Madagascar, Pakistan, were attributed to global warming. In 

particular, an increase in the temperature extreme values could modify the distribution of 

malaria and dengue (Githeko et al., 2000).  

In Bobo-Dioulasso, Burkina Faso, air temperature was found to be negatively correlated 

with malaria prevalence (Millogo et al., 2022). Despite the rising trend of air temperature 

due to climate change, there is not a known direct relationship with the Plasmodium 

falciparum malaria and dengue incidence (Githeko et al., 2000). A global recession of 
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these diseases is often explained by insufficient disease control actions coupled with a 

rapid urbanisation and economic growth (Gething et al., 2010).  

On the contrary, meningitis is found to have a positive correlation with temperature 

variation, in such a way that when the temperature increases, the risk of meningitis 

increases (Chen et al., 2022). Meanwhile, there has not been significant research on the 

relationship between air temperature and diseases. Quite interestingly, literature search 

yielded no results for the nexus between LST and diseases incidence in the area. 

 

2.3.5. Future LULC and LST prediction 

The urbanisation related LULC change is getting increased and to comprehend the trends 

of different LULC classes ahead of time, prediction operations need to be performed. 

Most of the models used to predict future LULC were based on the combination of 

Cellular Automata (CA) and Markov Chain (MC) models (Rimal et al., 2017; Hamad et 

al., 2018; Faichia et al., 2020; Tariq and Shu, 2020) or MC and Neural Network (NN) 

models (Lukas et al., 2023). The individual models were not capable of providing the 

quantity of future changes in LULC and the spatial distribution segment. For instance, 

the MC is a stochastic model that computes the state of a system with random variables 

that change through time (Soesbergen, 2016). MC determines the transitions probability 

and predict quantity of land that would change from the latest date to the predicted date 

(Dadhich and Hanaoka, 2011). The CA model is a spatial grid-based model where each 

change state is a function of time according to a defined set of rules that includes the 

neighbouring cells.  

The combined CA-MC model simulation process is such a way that the MC determines 

the quantity of land that would change from the latest date to the predicted date and the 

output is a probability matrix file that is used by the CA to evaluate the spatial change 
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(Rimal et al., 2018). The couple MLP-NN-MC model was widely used for LULC future 

prediction (Leta et al., 2021; Mungai et al., 2022). The MLP-NN is a robust machine 

learning algorithm which is capable of modelling spatially many transition potentials at 

once (Eastman, 2020a). The coupled models performed well in TerrSet environment with 

k statistics values greater than 80% in all studies, indicating the ability of the model to 

predict future LULC changes. In Burkina Faso, Yangouliba et al. (2022) used MLP-MC 

model in TerrSet Land Change Modeler (LCM) to predict future LULC in the Nakambe 

River Bassin. The findings revealed an increase in anthropogenic surfaces such as built-

up at the expense of natural vegetated areas. Other customized models including 

SLEUTH model (Sakieh et al., 2015), Conversion of Land use and its Effect (CLUE) 

model (Moulds et al., 2015) and Patch-generating Land Use Simulation (PLUS) model 

(Deng and Quan, 2022) were also employed to simulate future LULC changes.  

 

2.4. Examples from Other Regions 

The link between urban LULC, topography and LST has been investigated in other 

regions of the planet. Indeed, in Asia, an investigation on the impacts of LULC changes 

on LST in Beijing city was conducted by Jiang and Tian (2010). The Temperature-

vegetation index (TVX) approach was applied with Landsat images to assess the link 

between LULC change and LST. The findings revealed that LULC change towards built-

up surfaces was a key driver of increasing LST. Similarly, the correlation between the 

LST and topographic elements was studied in Hangzhou, China by Peng et al. (2020). 

The findings showed that the elevation and slope are negatively correlated with LST, 

while shaded relief is positively correlated. In addition, Estoque et al. (2020) conducted 

heat-health risk assessment in Philippine cities using MODIS daytime and night-time 

LST product and socio-ecological indicators. The results indicated that UHI effects are 
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more pronounced in the core area of the cities where built-up and other impervious 

surfaces occupy a larger area than open spaces and vegetation. Moreover, the heat-health 

risk occurs during daytime and night-time as well, with a higher impact during the day. 

The study emphasized the need to consider both daytime and night-time LST in heat 

health risk assessment research.  

In Europe, Alavipanah et al. (2015) used LULC and LST data coupled with statistical 

methods to study the role of vegetation in mitigating LST in Munich, Germany. The 

findings indicated a high cooling effect of vegetation in the areas with 70-80% of 

vegetation cover within a grid cell. Moreover, it was demonstrated that the LST within 

the vegetated areas is influenced by the surrounding built-up features. The study 

concluded that in terms of mitigating urban LST by means of greening areas, there is not 

a linear relationship between the lowest/highest LST and the amount of greening to 

develop. In Italy, MODIS data was used by (Stroppiana et al., 2014) to investigate the 

variability of LST regarding topography, LULC and solar radiation. The findings showed 

that topography strongly influenced LST variability and the correlation between LST and 

solar radiation is strong when coupled with the topography variable. Like findings from 

other studies, urbanised areas showed an increasing LST trend. 

In America, the response of UHI to urban expansion in the United States was assessed by 

Li et al. (2017). The study highlighted that the urban area size variation influences the 

UHI patterns. Moreover, it was demonstrated that the variation of UHI regarding the 

increase in size of an urban area is significant when the surrounding landscape has 

homogenous thermal characteristics. The driving forces of LST anomalous in Northern 

America were also researched. The findings indicated that the vegetation distribution and 

atmospheric water vapour influenced the changes in LST (Yan et al., 2020). 



  

43 
 

In Africa, few studies have investigated the nexus between LULC and LST and the related 

effects on human health. A study in Ethiopia on the link between LULC changes and LST 

showed that the development of impervious surfaces at the expense of vegetation areas, 

leads to an increasing in LST and consequently the UHI intensification (Tafesse and 

Suryabhagavan, 2019). Employing Gradient analysis and Partial Least Square (PLS) 

regression analysis technics, Dissanayake et al. (2019a) assessed the spatial patterns of 

LST over Lagos ‘city, Nigeria. The results showed that the LST distribution changed over 

the study period due to the variations in characteristics in the urban environment and the 

influence of economic activities. In Addis Ababa, Ethiopia, the assessment of the impact 

of landscape structure on LST variation, through gradient analysis and intensity 

calculation with Landsat images, showed that the impervious surfaces are the major 

impacting variable and its fraction declines from the city centre towards the urban fringe 

(Dissanayake et al., 2019b). 

In Burkina Faso, very few studies were conducted on the subject matter. Indeed, Di Leo 

analysed the role of green infrastructure in LST mitigation in Bobo-Dioulasso, using 

Landsat thermal images (Di Leo et al., 2016). The findings showed that the green areas 

displayed lower LST than the other LULC units. In terms of surface energy budget, 

Ouagadougou city experienced a reduction of albedo against an increasing trend of 

Sensible heat fluxes toward the downtown, due to the multiplication of concrete surfaces 

(Offerle et al., 2005). In addition, the evapotranspiration from vegetated areas is seen to 

be responsible for night cooling while the proximity of open water is a key factor in 

daytime cooling in hot-dry cities (Lindén, 2011). 
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2.5. Overview and Key Issues of the Study 

The previous studies emphasized the spatiotemporal variation of LST and its relationship 

with LULC in urban areas. Remotely sensed and ground observations data were used to 

map LULC, through supervised and unsupervised classification methods, to assess the 

LST patterns. In the study area, an unsupervised method was done with Landsat data to 

map the LULC and retrieve the surface temperature in Bobo-Dioulasso (Di Leo et al., 

2016). In Ouagadougou, observation data were used to characterize the nocturnal cool 

island of the city (Lindén, 2011). Overall, these studies focused on one city without any 

comparison possibility with others. Again, these studies did not undertake time series 

analysis of LULC change and LST trends for the sites that were investigated. In addition, 

machine learning algorithms combined with cloud computing platform have not been 

used to map LULC in the study area. Moreover, the response of LST to rapid urbanisation 

was not researched in the study area. More importantly, only a few research studies 

investigated the link between air temperature and diseases such as malaria, dengue, 

meningitis. 

Of significant interest to the present research, however, is that the link between the urban 

LULC change induced LST and the aforementioned diseases has never been done in the 

specific study sites chosen for this work. It remains then a relevant research area since 

many African cities are growing rapidly with significant effects on LST patterns. The 

present research attempts to fill these gaps by using Landsat time-series surface 

reflectance imagery, MODIS Aqua LST product with machine learning algorithms to 

determine the LULC evolution and derive the urban LST. The relationships between the 

LULC dynamics and LST and that between some diseases (malaria, dengue and 

meningitis) and LST have been investigated.  
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CHAPTER THREE 

3.0. MATERIALS AND METHODS 

 

3.1. Description of Materials 

This subsection presents the different datasets used in the research. It includes remote 

sensing data, meteorological data, ground reference and socio-economic datasets. 

 

3.1.1. Description of remote sensing data 

For this research, the remote sensing data included Landsat images, MODIS LST images 

and Shuttle Radar Topographic Mission Digital Elevation Model Version 3 (SRTM V3) 

image. Landsat satellite images ranging from 2003 to 2021, for the sensors Thematic 

Mapper (TM) carried by Landsat 5, Enhanced Thematic Mapper Plus (ETM+), carried 

by Landsat 7, and Operational Land Imager (OLI) carried by Landsat 8 were used. 

Landsat 5 and 7 acquire data in descending (daytime) mode, while Landsat 8 operates 

both in descending and ascending (occasionally) mode. For this study, the images from 

the daytime mode were used. In addition, MODIS Land Surface Temperature (LST) from 

the Aqua satellite was used to compute the LST over the study area.  

The present research used MODIS Aqua rather than Terra because it provides both day 

and night-time LST data, passes over the study area around the peak emission time (1:30 

pm). Aqua also has a daily temporal resolution, while other satellites such as Landsat 

sensing time is around 10:30 am and does not provide night-time LST and has a coarse 

temporal resolution of 16 days. Despite its coarse spatial resolution, MODIS Aqua is 

useful for surface temperature study. Furthermore, the 30 metres spatial resolution SRTM 

image was used to generate the topographic elements (elevation, slope, aspect) of the 

study area. These topographic elements were considered as predictors in the image 
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classification to help enhance the discrimination level between the different LULC 

classes. The choice of SRTM was motivated by the fact that it provides higher vertical 

accuracy (than ASTER for instance) digital elevation model of the earth (Farr et al., 2007; 

Forkuor and Maathuis, 2012). The voids have also been filled in this version of the dataset 

using non-commercial data such as ASTER Global Digital Elevation Model (GDEM) 

version 2 and Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) 

(NASA, 2000). Table 3.1 shows the summary of the remote sensing data used. 

Table 3.1.: Summary of the Remote Sensing Data Used  

Sensor Resolution Period Usage Source 

Landsat TM 30 m 2003-2012 
Extraction of 

surface reflectance 

information 

 

 

Google 

Earth 

Engine Data 

Catalogue 

 

 

Landsat ETM+ 30 m 1999-2021 

Landsat OLI 30 m 2013-2021 

MODIS Aqua 

LST 
1000 m 2003-2021 LST computation 

Image SRTM 

V3 
30 m 2000 

Generation of 

elevation and slope 

    Source: Author’s field survey (2022) 

 

3.1.2. Description of meteorological data 

The meteorological data required for this research included daily air temperature data and 

daily rainfall data. Ground observation datasets involving daily rainfall and daily air 

temperature datasets were collected from the National Meteorological Agency (ANAM) 

of Burkina Faso and used for the study area description. Additional datasets including 

reanalysis (model data combined with observation data) hourly air temperature data were 

collected from the European Centre for Medium-Range Weather Forecasts Reanalysis 

version 5 (ECMWF/ERA5) and utilized to establish the relationship between 2 m above 

ground air temperature and LST. The reanalysis data have an original spatial resolution 
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of 11,132 metres and ranged from 2003 to 2021 as the ground station data. Table 3.2 

presents the details of the meteorological data. 

Table 3.2.: Details of the Meteorological Data Used for the Study 

Data type Resolution Usage Source 

Air temperature data 

(min, max) 
Daily 

Study area 

description 

National 

Meteorological 

Agency-Burkina Faso 

Air temperature 

reanalysis data 

(mean) 

Hourly 

Air temperature 

trend analysis, LST 

gap-filling 

ECMWF/ERA5-Land 

(Google Earth Engine 

Data catalogue) 

Surface latent heat 

flux 
Hourly 

Energy budget 

patterns 

description 
Surface sensible heat 

flux 
Hourly 

Rainfall data Daily 
Study area 

description 

National 

Meteorological 

Agency-Burkina Faso 

   Source: Author’s field survey (2022) 

 

3.1.3. Description of reference samples and socio-economic data 

The reference samples were collected using Very High Resolution (VHR) images from 

Google Earth Pro. Moreover, statistical data on temperature-related diseases (reported 

cases) were gathered from the Ministry of Health, Burkina Faso, to assess the health 

impact of LST. Table 3.3 shows the details of the socio-economic and reference data used. 

Table 3.3.: Details of Socio-Economic Data Used for the Study 

Data type Resolution Usage Source 

Temperature-related 

disease statistics 

District 

level 

LST and diseases 

relationship 

Ministry of health, 

Burkina Faso 

Reference samples 

(training and testing) 
Yearly 

LULC 

classification 

Google Earth Pro 

VHR images 

     Source: Author’s field survey (2022) 
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3.2. Description of Methods of Data Collection 

In this subsection, the different methods employed in the data collection process are 

described. The subsection involves three sub-subsections: remote sensing data collection 

methods, meteorological data collection methods and field data collection methods. 

 

3.2.1. Remote sensing images collection 

For this study, the satellite images from Landsat 5, Landsat 7, Landsat 8 OLI, provided 

by the United States Geological Survey (USGS) were freely assessed from Google Earth 

Engine (GEE) data catalogue (https://code.earthengine.google.com). A search was made 

through Landsat collections, from 1st October to 31st December, each year, to identify the 

available images covering Ouagadougou Metropolitan area and Bobo-Dioulasso 

Metropolitan area as well. That procedure allowed for the collection of the longest 

possible time-based urban land use history of the study area (Hackman et al., 2020).  

Landsat satellites have a repeat cycle of sixteen (16) days, which means that the entire 

Earth is covered every sixteen days. The study area is covered by three Landsat scenes 

with the following references according to the Worldwide Reference System (WRS) 

version 2: path 195, row 51 for Ouagadougou and path 197, row 52; path 196, row 52 for 

Bobo-Dioulasso (Figure 3.1). Ouagadougou is sensed on cycle day number 4, between 

09:30 am and 10:30 am, while the satellite passes over Bobo-Dioulasso on cycle day 

number 2 between 10:05 am and 10:38 am. That means, in a month there is a maximum 

of two images covering the study area. 

https://code.earthengine.google.com/
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Figure 3.1.: Localisation of Landsat Scenes and MODIS Tiles Covering the Area 

  Source: Author’s field survey (2022) 

 

Landsat 5 and Landsat 7 have both four Visible Near Infrared (VNIR) bands namely Blue 

(band 1), Green (band 2), Red (band 3) and Near-Infrared (band 4) at 30 m spatial 

resolution. They also have two Short-wave Infrared (SWIR) bands: SWIR 1 (band 5 

SWIR 2 (band 7) and one thermal band (band 6) with an original spatial resolution of 60 

metres, which was resampled to 30 metres for harmonization purpose with the other 

spectral bands. In addition to these bands, Landsat ETM+ has a panchromatic band (band 

8) with 15 metres spatial resolution.  

Landsat 8 carries two sensors namely Operational Land Imager (OLI) and Thermal 

Infrared Sensor (TIRS). The OLI sensor comprises one coastal aerosol band (band 1); 

four VNIR bands: Blue (band 2), Green (band 3), Red (band 4) and Near-Infrared (band 

5); two Short-wave Infrared (SWIR) bands: SWIR 1 (band 5 SWIR 2 (band 7); one Cirrus 

band (band 9), all at 30 metres spatial resolution (USGS, 2019). It also records images 
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for one panchromatic band (band 8) at 15 m spatial resolution. The TIRS sensor collects 

data for two thermal bands (band 10 and band 11) at 100 metres original spatial resolution, 

resampled to 30 metres (USGS, 2019). The VNIR and SWIR bands were used to assess 

the LULC dynamics in the study area, from 2003 to 2021. 

In addition to Landsat images, MODIS LST data (Tile h17v7) were used for analysing 

the LST patterns in the study area. MODIS is a sensor onboard polar-orbiting satellites, 

Aqua and Terra. The Terra platform was launched in December 1999 and Aqua was 

launched in May 2002 (Chang et al., 2018). The Terra equatorial crossing time is around 

10:30 am in descending mode and 10:30 pm in ascending mode, while Aqua overpass 

time is around 1:30 pm in ascending mode and 1:30 am in descending mode (Wan et al., 

2004). It has 36 spectral bands with wavelengths ranging from 410 nm to 14,400 nm 

(Xiong et al., 2006). The bands’ spatial resolutions vary  from 250 metres (bands 1-2) to 

500 metres (bands 3-7) and 1,000 metres (bands 8-36) (Xiong et al., 2006). 

For this research, Google Earth Engine (GEE) platform was used. GEE is a cloud-based 

geospatial analysis platform which provides easy and instant access to satellite products 

and the necessary computing resources for direct processing on the platform (Parastatidis 

et al., 2017), without the need for downloading and storing in local system (Gorelick et 

al., 2017). There are many types of data in the GEE catalogue, but for this research two 

types of datasets were used: Landsat 5 - TM, Landsat 7 - ETM+, Landsat 8 - OLI surface 

reflectance data and MODIS Aqua daytime and night-time LST product.  
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3.2.2. Meteorological data collection 

The air temperature and rainfall datasets were collected from the National Meteorological 

Agency-Burkina Faso. The required meteorological data for this study are daily tabular 

datasets covering the areas of Ouagadougou and Bobo-Dioulasso. The ERA 5-Land 

reanalysed hourly air temperature data were also extracted from GEE Data Catalogue. 

The hourly data were aggregated into daily datasets in GEE platform and exported for 

further time-series analyses. 

 

3.2.3. Reference samples and socio-economic data collection 

The field survey consisted of reference samples (training and testing) collection for LULC 

classification. Statistical data on temperature-related diseases were also collected. 

 

3.2.3.1. Reference samples collection 

The reference samples were collected by observing a minimum mapping unit of 30 x 30 

metres of homogeneous landscape (Forkuor et al., 2018) to match the Landsat satellites 

images resolution (30 m). A point was then picked at the centre of each homogenous unit. 

The samples were collected from Google Earth Pro version 7.3.6.9345 high-resolution 

images through on-screen digitization. 

In total, four years were considered for the LULC analysis with an epoch of six years: 

2003, 2009, 2015 and 2021. The classification scheme used in this study is composed of 

five LULC classes including built-up, bare land, forest, agricultural land and water (Table 

3.4). Agricultural areas were combined with shrub land to have agricultural land class. 

This is because of the fact that agricultural areas look like savannah parks in the case of 

cultivated areas or shrubs in the case of fallow lands. This similarity implies a spectral 

confusion between the two classes in the region. The class considered as bare land is 
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composed of areas cleaned for construction or used for public activities such as football, 

and meetings (Hackman et al., 2020) or untarred roads.  

Table 3.4: Land Use/Land Cover Classification Scheme and Description 

LULC classes Description 

Built-up 
Area dominated by urban, peri-urban and rural settlements 

including pavement, tarred roads, and other concrete surfaces 

Bare land Surface without vegetation, building or water, untarred roads 

Forest Area occupied by urban parks, forests 

Agricultural land 
Cultivated lands including seasonal, permanent crops and 

fallows, shrubland, grassland 

Water Rivers, dams, lakes 

  Source: Adapted from Di Gregorio et al. (2000); Appiah (2016) 

 

For the purposes of quantitative analyses and comparison, homogenous point samples 

were collected throughout the four years. Given that the area is in continuous urbanisation 

and most of the LULC classes are being transformed to built-up areas, a change logic was 

adopted to collect the samples. Thus, for the built-up class, the earliest image was used 

as reference, assuming that in urban areas the conversion from other classes to built-up is 

irreversible.  

Moreover, to ensure that the samples are consistent throughout the period, the “Show 

historical imagery” tool in Google Earth Pro was employed to move forward, year after 

year, in order to record the pixels that remained built-up from 2003 to 2021. For the other 

classes (water, forest, bare land and agricultural land), the latest image was used making 

sure that the class of each sample is the same throughout the time series by going back in 

time and retaining the consistent pixels for the analysis. It is important to note that points 

features were created instead of polygons, because GEE treats polygons by transforming 
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them into spatial points and more attention has to be paid to digitize same-size polygons 

to get strong autocorrelation between pixels within each one (Abu et al., 2021).  

In total, 289 and 144 homogeneous and consistent samples were collected in 

Ouagadougou and Bobo-Dioulasso, respectively (Figure 3.2). Ouagadougou has more 

samples than Bobo-Dioulasso because more cloud-free historical high-resolution images 

were found over this area. However, in Bobo-Dioulasso, only the central area (urban core) 

was covered by clear images. 

 

Figure 3.2: Distribution of Reference Samples in the Study Sites 

                 Source: Author’s field survey (2022) 
 

3.2.3.2. Socio-economic data collection 

Data on selected temperature-related diseases were collected from the Ministry in charge 

of Health, Burkina Faso. The data were composed of monthly reported cases of malaria, 

dengue fever and meningitis from 2017 to 2021, based on data availability. 
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3.3. Description of Methods of Data Analysis 

This subsection presents the data analyses processes, the specific methods used and the 

software or tools as well. It also comprises the methodological flowcharts describing 

graphically the steps followed to achieve each objective of the study. 

 

3.3.1. Data analysis for land use/land cover dynamics assessment 

To assess the dynamic of LULC, the analyses consisted of the pre-processing and 

processing of satellite images, the LULC classification and the accuracy assessment. An 

intensity analysis was carried out to capture the different LULC classes changes pattern. 

 

3.3.1.1. Satellite images pre-processing 

For this research, GEE platform was used for the LULC mapping. The satellite images 

for the LULC mapping were collected from Landsat 5 TM, Landsat 7 ETM+ and Landsat 

8 OLI sensors, provided by the USGS. All the images were surface reflectance data from 

the Level 2 Collection 2 Tier 1 datasets, which are the second-generation of Landsat pre-

processed products. Indeed, prior to their ingestion into GEE Data Catalogue, the images 

were pre-processed to at-surface reflectance level through the Landsat Ecosystem 

Disturbance Adaptative Processing System (LEDAPS) in the case of Landsat 5 and 

Landsat 7 and the Landsat Surface Reflectance Code (LaSRC) in the case of Landsat 8 

OLI (USGS, 2020). 

Additional pre-processing tasks including scaling and cloud masking were performed on 

the images. Regarding the scaling procedure, the scale factor and offset value provided 

in the bands description in the GEE catalogue were used to reconstitute the surface 

reflectance values of the images. A cloud masking, using the Quality Assessment (QA) 

band, was also done on images with low cloud cover (<10 per cent). Furthermore, in May 
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2003, the Scan Line Corrector (SLC) onboard the Landsat 7 Enhanced Thematic Mapper 

Plus (ETM+) instrument failed (Singh and Prasad, 2015). The function of the SLC was 

to compensate for the forward motion of the satellite during data acquisition. This failure 

has resulted in data gaps (about 22 per cent of data lost) on each Landsat 7 scene and 

removed its capacity to provide spatially continuous fields, but the remaining spectral 

information maintains the same radiometric and geometric quality as images collected 

before the instrument’s failure (Yin et al., 2017; Asare et al., 2020).  

Many methods such as Weighted Linear Regression (WLR), integrated with Laplacian 

Prior Regularization Method (LPRM), Localized Linear Histogram Matching (LLHM), 

Neighbourhood Similar Pixel Interpolator (NSPI), Geostatistical Neighbourhood Similar 

Pixel Interpolator (GNSPI) and Multiple-Point Geostatistics (MPS) have been developed 

to fill the gaps. For this research, the USGS Landsat 7 gap-filling method was employed 

to fill the gaps in GEE platform (USGS, 2004). 

 

3.3.1.2. Satellite images processing 

For the LULC mapping, six atmospherically corrected surface reflectance bands, namely, 

Blue, Green, Red, Near-Infrared, and Shortwave-Infrared band 1 (SWIR 1) and 

Shortwave-Infrared band 2 (SWIR 2) were used. Assuming that the land cover type and 

configuration remained the same in both rainy and dry seasons, the median image for the 

October-December period for each year was computed from the image collections 

obtained for each classification year. In addition to the spectral bands, additional inputs 

composed of topographic derivatives (elevation, slope), as well as vegetation and some 

land cover specific indices were computed.  

The vegetation indices useful to discriminate vegetation from other LULC classes include 

the Normalized Difference Vegetation Index (NDVI) (Hackman et al., 2020) and 
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Enhanced Vegetation Index (Forkuor et al., 2018). Dry Built-up Index (DBI), Dry Bare-

soil Index (DBSI) and Normalized Difference Built-up Index (NDBI) (Rasul et al., 2018), 

Bare Soil Index (BSI) and Soil Adjusted Vegetation Index (SAVI) (Polykretis et al., 

2020), and Normalized Difference Water Index (NDWI) (Kafy et al., 2020) were the 

biophysical indices used. SAVI is used to correct NDVI for the influence of soil 

brightness in areas with low vegetation cover. BSI is used to show the difference between 

agricultural and non-agricultural land due to its ability to detect bare soil and fallow lands 

(Polykretis et al., 2020). DBI and DBSI are used in combination with NDBI to help 

distinguish between built-up class and bare land class, rather than using only NDBI due 

to its inability to distinguish between the two units in dry climate (Rasul et al., 2018), as 

in the context of Burkina Faso.  

Furthermore, Principal Component Analysis (PCA), a statistical approach that reduces 

the dimensionality of large datasets, was performed on the median images to extract the 

main uncorrelated bands that contain most of the spectral information (Tassi and Vizzari, 

2020). In sum, the predictors used for the image classification were composed of the 

median images, the vegetation and biophysical indices, the topographic elements 

(elevation and slope, derived from DEM image at a spatial resolution of 30 m) and the 

three Principal Component (PC). Table 3.5 presents the description of the different 

predictors used for LULC mapping. 
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Table 3.5: Details of the Predictors Used in the Image Classification. All predictors 

are calculated on a spatial resolution of 30 m. ρx represents the reflection in band x. 

Predictor Computation equation Description 

med(Blue) Median from October to December 
Median band of all blue bands in 

the period 

med(Green) median from October to December 
Median band of all green bands 

in the period 

med(Red) median from October to December 
Median band of all red bands in 

the period 

med(NIR) median from October to December 
Median band of all NIR bands in 

the period 

med(SWIR 1) median from October to December 
Median band of all SWIR1 

bands in the period 

med(SWIR 2) median from October to December 
Median band of all SWIR2 

bands in the period 

Elevation Automatic Elevation level 

Slope Automatic Slope classes 

PC1 PCA First principal component 

PC2 PCA Second principal component 

PC3 PCA Third principal component 

NDVI 
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸𝐷
 

Index to differentiate vegetation 

class from others 

SAVI 1.5 ∗
(𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷)

(𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸𝐷 + 0.5)
 Index to account for soil noise 

NDWI 
𝜌𝐺𝑟𝑒𝑒𝑛 − 𝜌𝑁𝐼𝑅

𝜌𝐺𝑟𝑒𝑒𝑛 + 𝜌𝑁𝐼𝑅
 

Index to discriminate water class 

from others 

NDBI 
𝜌𝑆𝑊𝐼𝑅1 − 𝜌𝑁𝐼𝑅

𝜌𝑆𝑊𝐼𝑅1 + 𝜌𝑁𝐼𝑅
 

Index to distinguish built-up for 

other classes 

DBI 
𝜌𝐵𝐿𝑈𝐸 − 𝜌𝑇𝐼𝑅

𝜌𝐵𝐿𝑈𝐸 + 𝜌𝑇𝐼𝑅
− 𝑁𝐷𝑉𝐼 

Index to distinguish between 

built-up and bare land 

DBSI 
𝜌𝑆𝑊𝐼𝑅1 − 𝜌𝐺𝑅𝐸𝐸𝑁

𝜌𝑆𝑊𝐼𝑅1 + 𝜌𝐺𝑅𝐸𝐸𝑁
− 𝑁𝐷𝑉𝐼 

Index to distinguish between 

built-up and bare land 

 Source: Author’s data analysis (2022) 

 

3.3.1.3. Land Use/Land Cover classification  

The image classification was performed using machine learning algorithms. Then, the 

collected reference datasets were divided into training and testing set to avoid overfitting 

(Gholamy et al., 2018). In general, the best results are obtained with 70 per cent – 80 per 

cent of the samples assigned to training sets and 20 per cent – 30 per cent of the data for 
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testing sets. For this study, 80 per cent of the samples were used to train the model and 

20 per cent were used for testing. A pixel-based image classification method was applied 

using three different supervised classifiers available in GEE: Random Forest (RF), 

Support Vector Machine (SVM), and Gradient Tree Boost (GTB). RF is a supervised 

machine learning algorithm founded on an ensemble of classification trees which 

employs bagging operation to generate multiple decision trees (ntree) based on a 

randomly selected subset of training data. Each tree is then grown to its maximum size 

based on a bootstrapped sample from the training dataset without any pruning, and each 

node is split using the best among a subset of input variables (mtry) (BREIMAN, 2001). 

The classification is performed by using the most voted class from each tree predictor. 

SVM is a non-parametric supervised learning algorithm considering that for a nonlinear 

separable dataset, consisting of points from two classes, all the points of one class can be 

separated from those of the other class by using an infinite number of hyperplanes. The 

best hyperplane with the largest margin between the two classes is selected by using a 

subset of training samples known as support vectors (Cracknell and Reading, 2014). RF 

and SVM have high performance in time-series image classification (Nery et al., 2016), 

achieving good accuracies in several studies conducted in the region (Zoungrana et al., 

2014, Zoungrana et al.,2015; Forkuor et al., 2015, Forkuor et al.,2018). GTB is a gradient 

boosting algorithm that uses regression trees as weak classifiers. The weak learners 

measure the error in each node, split the node and return the values (Son et al., 2015).  

 

3.3.1.4. LULC post-classification majority filtering 

After producing the LULC maps from the different classifiers and in order to improve the 

final results, the LULC images were converted to an image collection and a vertical 

majority filtering (using the mode function) was performed to have a single classified 
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image. To perform the image classification in GEE, numbers were assigned to each class 

(0: water, 1: Built-up, 2: Agricultural land, 3: Forest, 4: Bare land). Thus, the majority 

filtering process consisted of a spatial overlay of the outputs of the different classifiers 

after which, for each pixel, the most frequently occurring LULC class (the corresponding 

number) across the collection was selected as the final pixel label.  

In other words, the majority voting calculated the most common class at each pixel level 

across the image collection. When there is one majority vote (for example: 1,1,3), the 

majority value is returned (the majority pixel value is 1). In case there are multiple mode 

values (not applicable for this study, because it used three classifiers) or there is no 

majority vote (for example: 2, 1, 5), the minimum pixel value is returned (the minimum 

value is 1). Naboureh et al. (2020) found an improvement in LULC maps when applying 

majority voting with random under sampled SVM classifications. Figure 3.3 presents how 

the mode filter works in GEE under different conditions of majority voting. 

 

Figure 3.3: Majority Filter Process 

                                         Source: Author’s data analysis (2023) 

 

The accuracy of the majority voting was assessed using 1 000 random points. The pixel 

values of the random points were extracted from the majority vote image and each of the 

individual classifier results. The overall accuracy of each majority image was calculated 
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by dividing the number of majority pixels to the total number of pixels. The accuracies 

of the majority filtering results are presented in table 3.6. 

Table 3.6: Majority Filtering Overall Accuracy 

Year Ouagadougou Bobo-Dioulasso 

2003 0.88 0.84 

2009 0.89 0.86 

2015 0.82 0.88 

2021 0.86 0.93 

            Source: Author’s data analysis (2023) 

 

The final classification comes with “salt and pepper” effects due to misclassified pixels. 

Consequently, a post-classification horizontal majority filter (with a 3x3 neighbourhoods) 

was applied to replace the isolated pixels with the most common pixel values.  

 

3.3.1.5. Land Use/Land Cover accuracy assessment 

The accuracy of each classified map was assessed using the error matrix (Table 3.6), 

which is a two-entry table comparing the classified map to the actual data. Based on the 

different error matrices generated from the four time points classified maps, the LULC 

classification accuracy metrics were computed. 

Table 3.7: Error Matrix Design  

C
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Actual 

 1 2 … 𝑗 … q Total t𝑖+ 

1 t11 t12 … t1𝑗 … t1𝑞 t1+ 

2 t21 t22 … t2𝑗 … t2𝑞 t2+ 

…
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…
 

…
 

i t𝑖1 t𝑖2  tij  tiq t𝑖+ 

…
 

…
 

…
 

…
  

…
 

…
 

…
 

q tq1 t𝑞2   … tqq t𝑞+ 

Total t+𝑗 t+1 t+2 … t+𝑗 … t+𝑞  

   Source: Adapted from Mas et al. (2014) 
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The LULC maps accuracy metrics including overall accuracy (OA) and kappa coefficient 

(k) were computed based on the error matrix. The overall accuracy is the proportion of 

all pixels correctly classified in their categories (Mas et al., 2014). It is computed 

according to Equation (3.1). 

𝑂𝐴 =
∑ 𝑡𝑖𝑖

𝑞
𝑖=1

𝑁
× 100       (3.1) 

where q is the number of LULC classes, 𝑡𝑖𝑖 is the number of pixels of class i correctly 

classified in class I, N is the total number of pixels in the study area. 

The kappa coefficient which is known to be more robust than the OA because it takes into 

consideration the agreement occurring by chance (Loosvelt et al., 2012) was also 

calculated. A value of k below 0 indicates no agreement between the classified map and 

the observations, 0-20% means a slight agreement, 21-40% corresponds to a fair 

agreement, 41-60% is a moderate agreement, 61-80% shows a substantial agreement, and 

81-100% indicates an almost perfect agreement (Loosvelt et al., 2012). The kappa 

coefficient is computed following Equation (3.2). 

𝑘 =
𝑁 ∑ 𝑡𝑖𝑖−∑ (𝑡𝑖+𝑡+𝑗)

𝑞
𝑖=1

𝑞
𝑖=1

𝑁2−∑ (𝑡𝑖+𝑡+𝑗)
𝑞
𝑖=1

       (3.2) 

Where 𝑡𝑖+ is the total number of classified pixels in class i, and 𝑡+𝑗 is the total number of 

prediction pixels in class j. N is the total number of prediction pixels.  

 

3.3.1.6. Land Use/Land Cover intensity analysis 

Intensity analysis is a mathematical framework that compares a uniform intensity to 

observed intensities of temporal changes among categories (Pontius et al., 2013). 

Uniform intensity is defined as the hypothetical change intensity when the overall change 

occurred during a time interval was uniformly distributed, from the beginning to the end 

of the interval (Aldwaik and Pontius, 2012). In this study, the categories refer to the 
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different LULC classes, namely built-up, agricultural land, forest, bare land and water. 

Based on the classified maps years, the time intervals include 2003 - 2009, 2009 - 2015, 

2015 - 2021. Intensity analysis takes place at three levels including interval level, category 

level and transition level (Quan et al., 2019). To perform intensity analysis, in this study, 

the equations based on Aldwaik and Pontius (2012) were used. The following 

mathematical notations were used: Yt corresponds to the year at time point t; Yt+1 is the 

year at time point t+1. J is the number of categories; j is the index for a category at the 

latter time point of an interval; i is the index for a category at the initial time point of an 

interval; n is the index of the gaining category for the selected transition; Ctij is the size of 

transition from category i to category j during interval Yt - Yt+1; Ctin is the size of annual 

transition from i to n during interval Yt - Yt+1; Ctnj is the size of transition from n to j during 

interval Yt -Yt+1. Ctnn is the size of annual gain of n during interval Yt -Yt+1. 

The interval level analyses the overall change size and the annual change intensity of the 

whole area in each time interval (Quan et al., 2019). The annual change intensity of the 

study area during time interval t (St) is computed through Equation (3.3). Equation (3.4) 

shows how to compute uniform change intensity during time interval t (UT). If St < UT 

then the change is slow. In case St > UT then the change is fast. 

𝑆𝑡 =
change during interval 𝑡

study area size×interval 𝑡 duration
 ×  100 =  

∑ [(∑ 𝐶𝑡𝑖𝑗)−𝐶𝑡𝑖𝑗]
𝐽
𝑖=1

𝐽
𝑗=1

(𝑌𝑡+1− 𝑌𝑡)(∑ ∑ 𝐶𝑡𝑖𝑗)
𝐽
𝑖=1

𝐽
𝑗=1

×  100               (3.3) 

𝑈𝑇 =
change during all intervals  

study area size×study duration
 ×  100 =  

∑ (𝑇−1
𝑡=1 ∑ ∑ 𝐶𝑡𝑖𝑗)

𝐽
𝑗=1

𝐽
𝑗=1

(𝑌𝑇− 𝑌1)(∑ ∑ 𝐶𝑡𝑖𝑗)
𝐽
𝑖=1

𝐽
𝑗=1

 ×  100                   (3.4) 

The category level compares the variation in size and intensity of gross gains and gross 

losses across categories during each time period (Quan et al., 2019). The loss intensity 

(Lti) from a category i is the lost percentage of the start size of that category i during the 

time interval t (Equation 13). The gain intensity (Gtj) to a category j corresponds to the 
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percentage of the end size of that category j that gained during the time interval t and is 

computed according to Equation (3.5). The intensity of a uniform change during time 

interval t is defined by St is given by equation (3.6). If Lti < St or Gtj < St, then the loss 

from category i or gain to category j during time interval t is dormant. If Lti > St or Gtj > 

St, then the loss from category i or gain to category j during time interval t is active. 

𝐿𝑡𝑖 =
loss of category 𝑖 during interval 𝑡

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 × size of category 𝑖 at start time
 ×  100 =  

∑ 𝐶𝑡𝑖𝑗−𝐶𝑡𝑖𝑖
𝐽
𝑖=1

(𝑌𝑡+1− 𝑌𝑡) ∑ 𝐶𝑡𝑖𝑗
𝐽
𝑖=1

×  100   (3.5) 

𝐺𝑡𝑗=
gain of category j during interval t

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 × size of category 𝑗 at end time
 × 100= 

∑ 𝐶𝑡𝑖𝑗−𝐶𝑡𝑖𝑗
𝐽
𝑖=1

(𝑌𝑡+1− 𝑌𝑡) ∑ 𝐶𝑡𝑖𝑗
𝐽
𝑗=1

×  100         (3.6) 

The transition level computes for each time interval how each category’s transitions vary 

in size and intensity across (Pontius et al., 2013). The transition intensity from category i 

to category n during time-interval t (Rtin), where i is different from n, is defined by 

equation (3.7). Equation (3.8) presents the uniform or hypothetical transition intensity to 

category n during time interval t (Wtn). In case Rtin < Wtn, then the gain or loss of n avoids 

i during interval t. If Rtin > Wtn, then the gain or loss of n targets i during time interval t. 

𝑅𝑡𝑖𝑛 =
𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 𝑓𝑟𝑜𝑚 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑖 𝑡𝑜 𝑛 𝑑𝑢𝑟𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑡 × 100

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 × 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑖 𝑎𝑡 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒
 =

𝐶𝑡𝑖𝑛 × 100

(𝑌𝑡+1− 𝑌𝑡) ∑ 𝐶𝑡𝑖𝑗
𝐽
𝑗=1

                  (3.7) 

𝑊𝑡𝑛 =
𝑔𝑎𝑖𝑛 𝑜𝑓 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑛 𝑑𝑢𝑟𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑡 × 100

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 × 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑛𝑜𝑛 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑛 𝑎𝑡 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒
=

∑ 𝐶𝑡𝑖𝑛−𝐶𝑡𝑛𝑛
𝐽
𝑖=1  × 100

(𝑌𝑡+1− 𝑌𝑡) ∑ [(∑ 𝐶𝑡𝑖𝑗)−𝐶𝑡𝑛𝑗]
𝐽
𝑖=1

𝐽
𝑗=1

   (3.8) 

To perform the intensity analysis, the “OpenLand” package (Exavier and Zeilhofer, 2020) 

in R environment was used. The LULC outputs from the four years were used as input 

data in the “ContingencyTable” function to generate a cross-tabulated matrix comprising 

the quantity of changes in square kilometre from one category to another between two 

consecutive time points. This cross-tabulated matrix was utilized as input in the 

“intensityAnalysis” function to compute the interval, category and transition levels of 
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changes that have occurred between the different categories, during the three-time 

intervals. Figure 3.4 presents the overall methodological flowchart for LULC mapping in 

the study area. 

 

Figure 3.4.: Flowchart of the image classification process 

                      Source: Author’s data analysis (2023) 
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3.3.2. Data analysis for LST and air temperature trend assessment 

To assess LST and air temperature trend, the analysis consisted of LST missing data 

assessment and LST gap-filling. LST and air temperature trend and LST and air 

temperature relationship were also performed. 

 

3.3.2.1. LST missing data assessment  

Satellite LST is vital for climatological and environmental studies, but the available 

dataset are not continuous in time and space due to cloud cover (Shiff et al., 2021). 

Indeed, MODIS produces daily both daytime and night-time, almost global coverage, 

LST data at a spatial resolution of 1 km. However, the datasets are often discontinued due 

mainly to cloud cover. In this research, the daily LST data extracted from MODIS thermal 

imagery were analysed to detect missing data. The missing values in each dataset from 

2003 to 2021 are presented in Figure 3.5. 

 

Figure 3.5: Missing LST Data 

                                              Source: Author’s data analysis (2022) 
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The figure 3.5 shows that over the site of Ouagadougou, there was 36% daytime and 40 

% night-time missing LST data. In Bobo-Dioulasso, the missing data was estimated at 

37% and 48% during daytime and night-time, respectively. Indeed, these daily missing 

data over the urban area could alter the quality of monthly, seasonal and yearly average 

LST computation (Li et al., 2018). For example, there are months with more than five 

missing daily data, and to include them in the calculation of monthly means, a gap-filling 

operation was performed to compute the missing data based on the observed daily LST 

values (Anderson and Gough, 2018). 

 

3.3.2.2. LST gap-filling 

To fill the data gaps and produce a continuous LST, different interpolation methods 

including the use of available early observations data or data from nearby pixels to 

compute LST in pixels with data gaps (Jin and Dickinson, 2000), as well as air 

temperature to LST relationships (Shiff et al., 2021) were used. For this research, an 

approach combining the 1-km MODIS LST product with the 0.1°x 0.1° ERA5-Land 2 

meters above ground air temperature datasets were used to produce a spatiotemporally 

continuous gap-filled LST of MODIS at the spatial resolution of 1-km. The method was 

based on the following considerations: Firstly, daily minimum LST and air temperature 

values are recorded in early morning while the air temperature peak occurs 1-3 hours after 

LST maximum at noon (Good, 2016); secondly, LST under cloud coverage is close to 2-

m air temperature value; thirdly, LST at a specific time and location involves two 

components: the long-term mean (climatology) and the deviation from that climatology 

(anomaly) due to weather conditions (Shiff et al., 2021).  

So, a Temporal Fourier Analysis (TFA) was performed on the daytime and night-time 

existing LST values and the 2 metres above ground air temperature data as well. TFA is 
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a mathematical method that decomposes a time-dependent periodic phenomenon into 

series of sinusoidal functions, each defined by unique amplitude and phase (Jakubauskas 

and Legates, 2000). It describes the seasonal cycles of temperature in terms of annual, bi-

annual and tri-annual components or harmonics, and the combination of those 

components is considered as the climatology in the present study. The application of TFA 

in both temperature variables resulted in LST and air temperature climatology values 

from 2003 to 2021. Based on the daytime and night-time climatology values, the air 

temperature anomaly was computed. To proceed to the gap-filling, the cloud free daytime 

and night-time LST climatology values were added, respectively, to the daytime and 

night-time air temperature anomalies to generate the daytime and night-time continuous 

LST values of the study sites, as shown in Equation (3.9) (Shiff et al., 2021). 

LST𝑢𝑛𝑑𝑒𝑟_𝑐𝑙𝑜𝑢𝑑 = LST𝑐𝑙𝑖𝑚 + T𝑎𝑛𝑜𝑚𝑎𝑙𝑦       (3.9) 

Where LSTunder_cloud is the value of missing LST, LSTclim is the climatological clear sky 

mean LST and Tanomaly is the anomaly value of 2-m air temperature.  

To assess the performance of the derived continuous LST model, the commonly used 

statistical metrics including Root Mean Square Error (RMSE) and Mean Absolute Error 

(MAE) (Bartkowiak et al., 2019) were calculated with the daytime and night-time cloud 

free pixel LST values. In addition, Pearson correlation was performed to evaluate the 

strength of the relationship between the two datasets. Table 3.8 presents the error metrics. 

Table 3.8: Error Metrics of MODIS Gap-Filled LST Dataset 

 Ouagadougou Bobo-Dioulasso 

 RMSE MAE Pearson RMSE MAE Pearson 

LST Day 3.84 2.00 0.83 4.11 2.42 0.84 

LST Night 2.23 1.21 0.89 1.38 0.69 0.90 

 Source: Author’s data analysis (2022) 
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The RMSE ranges between 1.38 and 4.11, while the MAE fluctuates between 0.69 and 

2.42. For the correlation, all the coefficient values are greater than 80 per cent. These 

values are acceptable, because they are within the validation interval of previous research 

work which performed models’ performance assessment using similar metrics (Kou et 

al., 2016; Malamiri et al., 2018; Shiff et al., 2021). After validating the computed 

continuous daytime and night-time LST data, they were used to fill only the missing 

values in the MODIS LST product, through blending method, to produce a spatio-

temporal continuous LST datasets. 

 

3.3.2.3. LST and air temperature trend analysis 

The trend of air temperature and LST dataset from 2003 to 2021, was computed through 

the non-parametric Mann-Kendall’s trend test. The Mann-Kendall test is one of the most 

popular non-parametric trend test based on observational ranking and is less sensitive to 

outliers (Yadav et al., 2014). It is used to analyse time-series data for consistently 

increasing or decreasing trends detection. It works for all distributions, which means the 

data need not meet a normal distribution. The purpose was to determine if the 

temperatures time series exhibited a significant monotonic increasing or decreasing trend, 

using a threshold (p-value) of 0.05 (95 per cent Confidence Interval).  

To perform a trend test in a dataset without any autocorrelation, the levels of serial 

correlation of the seasonal and yearly time series datasets were investigated. The presence 

of serial correlation among the datasets was verified visually, using the Auto-Correlation 

Function (ACF) functions in R environment, which compute the autocorrelation in the 

dataset. The Bias corrected Prewhitening (bcpw) function from the Modified Versions of 

Mann-Kendall and Spearman's Rho Trend Tests package (modifiedmk) was applied to 

the datasets with autocorrelation before running the trend (Patakamuri and O’Brien, 
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2021). For the yearly and seasonal temperatures trend, the Mann-Kendall Test of Time 

Series Data Without Modifications (mkttest) function was used (Patakamuri and O’Brien, 

2021), because no significant autocorrelation was found within the datasets.  

 

3.3.2.4. LST and air temperature relationship 

To assess the relationship between the LST and 2-m above ground air temperature two 

multivariate statistical methods were used. First of all, the datasets were checked to test 

the normality assumption (Ghasemi and Zahediasl, 2012). The normality test was 

performed through quantile-comparison plot (Figure 3.6) and Kolmogorov-Smirnov (KS) 

Test (for more than 5 000 entries).  

 

Figure 3.6: Quantile-Comparison of Temperature Datasets 

                     Source: Author’s data analysis (2023) 
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The visualisation of the plot indicated a non-normal distribution of the datasets for both 

cities, because the points do not follow the diagonal reference line. In addition, the p-

values of the KS test are greater than the threshold value of 0.05 for both sites, then the 

datasets do not meet the normal distribution. However, according to the central limit 

theorem, “sample means are approximately normal for moderately large sample sizes 

even if the original populations are non-normal” (Elliott and Woodward, 2007). 

Therefore, with such a large sample size (the dataset has more than 6,000 entries) and 

given that the dataset is composed of two groups (LST and air temperature) of quantitative 

variables, a t-Test was performed to compare them in terms of mean values, following a 

simple conservative approach (in case of unequal variances).  

In addition, Spearman correlation was performed to assess the degree of relationship 

between the two variables. The values are comprised between -1 and +1, indicating a 

positive correlation when the ranks of the two variables increase at the same time, whereas 

the correlation is negative when the rank of one variable increases as the other one 

decreases (Patra et al., 2018). A value of zero or close to zero means no relationship 

between the two variables. 

 

3.3.2.5. Estimation of surface urban heat island intensity 

The Surface Urban Heat Island (SUHI) was assessed in this study as the LST difference 

from the average LST of the whole area. SUHI intensity over the study area was 

quantified using the Relative surface temperature (TR) concept (Xu et al., 2013). It is a 

relative concept calculated by subtracting the average LST value of the whole area from 

the LST value of each pixel and dividing by the average LST, as shows in Equation (3.10).  
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𝑇𝑅 =
𝐿𝑆𝑇𝑖−𝐿𝑆𝑇𝑎

𝐿𝑆𝑇𝑎
       (3.10) 

Where, LSTi is the surface temperature value for a pixel i, 𝐿𝑆𝑇𝑎 is the average surface 

temperature value of the area.  

After the computation of the TR, the values were grouped into classes and the 

corresponding SUHI intensities were defined (Table 3.9). Figure 3.7 shows the 

methodological flowchart for LST and air temperature analysis. 

Table 3.9: SUHI Intensity Definition 

Relative surface temperature (°C) SUHI intensity level 

< 0 Weak heat island 

0 – 0.05 Moderate heat island 

> 0.05 Strong heat island 

 Source: Adapted from Xu et al. (2013) 
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Figure 3.7.: Flowchart for LST and Air Temperature Trend Assessment  

         Source: Author’s data analysis (2022) 
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3.3.3. Data analysis for LULC and LST relationship 

A fractional cover analysis was done, using the “aggregate” function in R to extract the 

proportion of each LULC class per pixel for the assessment of the relationship between 

the LULC dynamics and LST trend. Indeed, the algorithm takes a classified high-

resolution image (LULC from Landsat images), downscales it and calculates the fraction 

of a given land cover class within each coarse pixel. To perform that analysis, the LULC 

maps for 2003, 2009, 2015 and 2021 were reclassified to have two homogeneous classes: 

built area and non-built area (Table 3.10). The objective is to evaluate the implication of 

human footprint (built-up areas) in LST intensification and the contribution of natural 

areas (non-built-up) to lower the LST values in urban settings. 

Table 3.10: Reclassified Homogeneous LULC Classes 

LULC classes Reclassified 

Built-up 
Built-up 

Bare land 

 

Forest 
Non-built-up 

Agricultural land 

Water 

                    Source: Author’s data analysis (2022) 

 

The spatial resolution of the LULC images was set to 900 metres instead of 1,000 metres 

as the LST images because the aggregate function accepts integer multiple factors (a 

factor of 30 was applied). The aggregate function was used in the R environment to 

calculate the proportion of each LULC class within 900×900 square metres pixels. After 

the computation of the proportions, the LULC datasets were stacked with the LST images. 

In addition, a grid layer of 900×900 square metres was created. Using the stacked layer 

together with the grid layer, the built and non-built cover ratio and the equivalent LST 

values per pixel were extracted through the “Zonal statistics” tool in QGIS. The coverage 
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rates were then grouped into 5 classes (0 per cent -20 per cent, 20-40 per cent, 40-60 per 

cent, 60 per cent -80 per cent, and 80 per cent -100 per cent) to examine the LST patterns.  

Furthermore, statistical analyses comprising median differences and Pearson correlation 

were performed to show the correlation between the LST and the different LULC rates, 

and the cooling effects of non-built surfaces. Indeed, to show the impact of non-built 

pixels on urban cooling, the median LST value of each of the five non-built coverage 

classes (0 per cent -20 per cent, 20 per cent -40 per cent, 40 per cent -60 per cent, 60 per 

cent -80 per cent, and 80 per cent -100 per cent) was subtracted from the median LST 

value of the fully built-up pixels (Alavipanah et al., 2015). The higher the median 

difference, the higher the cooling effect of the concerned non-built cover rate. The 

methodological flowchart for assessing the relationship between LULC and LST is 

presented in Figure 3.8. 
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Figure 3.8: Flowchart for LULC and LST Relationship Assessment  

              Source: Author’s data analysis (2022) 
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3.3.4. Data analysis for LST and diseases relationship 

The derived LST data and the reported cases of selected temperature-related diseases, 

including Plasmodium falciparum malaria, dengue fever and meningitis, collected from 

the Ministry of Health at district level were used. The choice of the diseases is motivated 

by the fact that in the literature, investigations were only made on the link between the 

air temperature and diseases such as Plasmodium falciparum malaria (Chastel, 2006; 

Gething et al., 2010; Millogo et al., 2022), dengue (Chastel, 2006) and meningitis (Chen 

et al., 2022). 

Moreover, these diseases are all considered as potential epidemic diseases under 

monitoring in the National health system of Burkina Faso (Ministère de la santé, 2012). 

The urban area in the two cities were considered for the analyses because the statistical 

datasets on the diseases were full of gaps, particularly concerning the peripheral areas. 

The urban areas were divided into 5 and 3 zones respectively for Ouagadougou and Bobo-

Dioulasso in line with the spatial coverage (district level) of the data received. Later on, 

“Zonal statistics” tool was employed in QGIS software to extract the average annual Land 

Surface Temperature values for each zone. 

The generated mean LST values were used with the reported case statistics for each 

disease to perform a correlation analysis in R environment applying Spearman method, 

which is a non-parametric method, because the data did not follow a normal distribution. 

Figure 3.9 presents the flowchart for assessing the relationship between LST and diseases. 



  

77 
 

 

Figure 3.9: Flowchart for LST and Diseases Relationship Assessment  

            Source: Author’s data analysis (2022) 

 

3.3.5. Data analysis for future LULC and LST prediction 

3.3.5.1. Future LULC prediction 

The future prediction of LULC was performed using Land Change Modeler (LCM), an 

integrated software embedded in TerrSet package (Eastman, 2020b). LULC simulation 

in LCM follows an empirical stepwise process including change analysis, transition 

potential modelling, and prediction (Eastman, 2020b). The process is based on the 

historical changes between time 1 (t1=2009) and time 2 (t2=2015) to predict the future 

LULC in both cities. The change analyses showed that anthropogenic actions are 

increasing in both studied cities, through the development of built-up areas. To 

comprehend the patterns of change in the area, the spatial trend tool in LCM was used to 

produce trend maps following a 9th order polynomial function (Eastman, 2020b).  
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LULC future prediction needs to consider independent variables (earliest and latest 

images) and some main driver variables. The common driver’ variables used in LULC 

simulation in LCM included distance from river, distance from road, distance from urban 

(settlement area), elevation, slope (Mungai et al., 2022) and evidence likelihood 

(Yangouliba et al., 2022). Table 3.11 describes the contribution of the driver’ variables. 

Table 3.11: LULC Change Drivers 

Variable Description 

Elevation Physical constraint to LULC change 

Slope Physical constraint to LULC change 

Distance from rivers 
Dynamic variable that provides convenience to access 

resources while changing LULC  

Distance from roads 
Dynamic variable that expresses accessibility and drives 

urban expansion 

Distance from urban 
The closer the land to an existing settlement area, the 

easier it is for that land to change to built-up surface 

Evidence likelihood 
Expresses the likelihood of finding change between built-

up and all other LULC class in a pixel 

    Source: Adapted from Leta et al. (2021) and Girma et al. (2022) 

 

LCM has a set of models for predicting LULC potential transitions based on the driver 

variables and the independent LULC maps. The most common used is the Multi-Layer-

Perceptron Neural Network (MLP-NN) (Mungai et al., 2022). For this study, the MLP-

NN was used because of its ability to model many non-linear transitions’ potential at once 

(Eastman, 2020a). This model also showed good performance in predicting future LULC 

in the region (Yangouliba et al., 2022). Based on the selected driver variables and the 

major LULC transition between 2009 and 2015, the model was trained to simulate the 

LULC maps for 2021 in order to assess the model’s ability to predict future LULC in the 

study area. Thus, the agreement between the simulated and classified LULC maps of 2021 

were evaluated through the VALIDATE module in IDRISI GIS Analysis. The validation 
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metrics used were the k statistics including the overall accuracy (Kno) and the model’s 

ability to identify correct locations (Klocality) (Sibanda and Ahmed, 2020).  

To predict future LULC in the study area, the Business As Usual (BAU) scenario was 

used within a Markov Chain model. This scenario is the one that follows the normal 

course of land use activity in the area and involves predicting what the landscape would 

look like in 2027 and 2050 if the nature of urban development remains unrestricted, 

dominated by the development of built-up surface at the expense of natural areas. 2027 is 

the following year based on the six years epoch as considered in historical LULC analysis, 

while and 2050 corresponds to the target year for reaching global net zero CO2 emission 

to limit the warming level to 1.5°C (IPCC, 2023). Figure 3.10 presents the flowchart for 

future LULC prediction. 

 

3.3.5.2. Future LST prediction 

The correlation analyses performed between LST and built-up rate and LST and non-

built-up rate in Objective 3 showed that the two variables had a strong linear relationship 

with LST. A Multiple Linear Regression (MLR) model was then built using the historical 

LST and LULC data for the years 2009 and 20015 as shown by Equation (3.11) (Estoque 

and Murayama, 2017; Sekertekin and Zadbagher, 2021). In order to evaluate the model 

accuracy, for predicting future LST, LST maps of 2021 was simulated and compared with 

the initial LST maps of 2021, using Kappa Index of Agreement. 

𝐿𝑆𝑇 = 𝑎0 + 𝑎1 × 𝑏𝑢𝑖𝑙𝑡_𝑢𝑝 + 𝑎2 × 𝑛𝑜𝑛_𝑏𝑢𝑖𝑙𝑡_𝑢𝑝 + 𝑒  (3.11) 

Where LST corresponds to the LST value of a pixel, 𝑎0 is the intercept of the regression 

line, 𝑎1 is the regression coefficient of built-up, 𝑎2 is the regression coefficient of non-

built-up and 𝑒 is the residual standard error. Afterwards, the predicted LULC maps of 
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2027 and 2050 were reclassified into two classes namely built-up and non-built-up. The 

proportion of each class per pixel of 900 × 900 square metres was also calculated. The 

LST maps for 2027 and 2050 were then predicted using the MLR model with the 

independent variables being built-up and non-built-up rate of the respective years (Figure 

3.10).  

 

Figure 3.10: Flowchart for Future LULC and LST Prediction 

                  Source: Author’s data analysis (2023) 
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CHAPTER FOUR 

4.0. RESULTS AND DISCUSSION 

 

4.1. Results 

The results section is composed of five subsections based on the objectives of the study. 

It presents firstly the results of the LULC dynamics assessment in Ouagadougou and 

Bobo-Dioulasso. Secondly, the findings on the LST and air temperature trend analysis 

across the study area are presented. Thirdly, the results on the correlation between LST 

and urban LULC changes are presented. The fourth subsection presents and analyses the 

results on the relationship between the distribution of LST and the prevalence of 

temperature-related diseases in the two cities. The last subsection presents the findings 

related to the future predictions of LULC changes and LST in the study area. 

 

4.1.1. Land use/land cover dynamics assessment 

4.1.1.1. Land use/land cover spatial distribution  

The LULC maps of Ouagadougou (Figures 4.1) show that the dominant classes are 

agricultural land and built-up area. There was a continuous expansion of settlement areas 

from the inner city towards the peripheral areas at the expense of other land uses such as 

agricultural areas. Being the two main land use classes in the area, they have a negative 

correlation in terms of spatial growth. While built-up is expanding in the area, agricultural 

lands are decreasing, indicating the intensification of human footprint throughout the 

years. Other LULC classes such as water bodies, forest and bare land were also present 

in the maps. In Bobo-Dioulasso, agricultural land, forest and built areas are the most 

represented (Figure 4.2). Like Ouagadougou, the settlement areas in Bobo-Dioulasso kept 

growing, at the expense of natural landscape such as forest areas. The expansion of built-

up areas towards the northern part of Bobo-Dioulasso’s city is due to the development of 
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a new estate, named “Bobo 2010”, beginning from year 2007. The water bodies and bare 

land areas occupy small surfaces in the maps. 

 
Figure 4.1: LULC Distribution in Ouagadougou 

 

 
Figure 4.2: LULC Distribution in Bobo-Dioulasso 
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4.1.1.2. Land use/land cover classification accuracy  

The accuracies of the classified LULC images were assessed using the overall accuracy 

and the kappa coefficient. The individual classifications overall accuracy varied between 

0.8 and 0.94 performed by the Random Forest (RF) classifier, respectively in 2021 and 

2003 in Ouagadougou. In Bobo-Dioulasso, the minimum accuracy was achieved by RF 

in 2015 (0.66) while the maximum was performed by the Support Vector Machine (SVM) 

classifier in 2003 (0.77). The majority voting results showed smoothed overall accuracies 

and kappa coefficients for all the years in Ouagadougou (Table 4.1). However, there is an 

improvement for both metrics, compared to the results of all the individual classifiers, for 

year 2009. For Bobo-Dioulasso, the majority filtered images presented stable (2009 and 

2015) to totally improved values (2003 and 2021) compared to the individual classifiers 

for the overall accuracy and the kappa coefficient (Table 4.2). 

Table 4.1: LULC Accuracy Metrics in Ouagadougou 

 

Year RF GTB SVM Majority RF GTB SVM Majority 
 Overall Accuracy kappa coefficient 

2003 0.94 0.89 0.82 0.87 0.9 0.81 0.69 0.79 

2009 0.81 0.8 0.85 0.87 0.68 0.66 0.74 0.79 

2015 0.85 0.87 0.85 0.85 0.74 0.77 0.75 0.77 

2021 0.8 0.83 0.92 0.82 0.66 0.72 0.87 0.72 

Source: Author’s data analysis (2023) 

Table 4.2: LULC Accuracy Metrics in Bobo-Dioulasso 

 

Year RF GTB SVM Majority RF GTB SVM Majority 

Overall Accuracy kappa coefficient 

2003 0.66 0.71 0.77 0.81 0.52 0.6 0.7 0.75 

2009 0.74 0.71 0.74 0.74 0.63 0.58 0.64 0.64 

2015 0.66 0.74 0.74 0.74 0.52 0.64 0.63 0.64 

2021 0.71 0.78 0.71 0.85 0.57 0.69 0.59 0.79 

Source: Author’s data analysis (2023) 
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4.1.1.3. Land Use/Land Cover trend 

The landscape units have changed in different ways in Ouagadougou and Bobo-

Dioulasso, between 2003 and 2021. In Ouagadougou, the built area occupied 32.75 per 

cent, 35.95 per cent, 46.86 per cent and 58.34 per cent of the total landscape for 2003, 

2009, 2015 and 2021 respectively (Table 4.3). Conversely, the agricultural land areas 

experienced a decreasing trend represented by 65.45 per cent, 60.86 per cent, 50.13 per 

cent and 37.80 per cent of the area for 2003, 2009, 2015 and 2021 respectively. These 

figures indicate a linear increase of 78.13 per cent for built area against a decrease of 

42.25 per cent in agricultural land between 2003 and 2021. The forest areas experienced 

a global increase of 55.56 per cent, while the water bodies increased by 2.84 per cent due 

to the construction of a new dam in the northern part of Ouagadougou in 2007. Bare land 

surfaces also increased and occupied more than 19 per cent of the area in 2021.  

Table 4.3: Proportion of LULC Classes in Ouagadougou (% of the total area) 

LULC class 2003 2009 2015 2021 

Built 32.75 35.95 46.86 58.34 

Agricultural land 65.45 60.86 50.13 37.80 

Forest 0.81 0.67 1.22 1.26 

Bare 0.39 1.71 0.98 1.98 

Water 0.60 0.81 0.81 0.62 

         Source: Author’s data analysis (2023) 

 

In Bobo-Dioulasso, like Ouagadougou, the built areas continuously increased during the 

study time span. The built-up areas represented 4.10 per cent, 5.19 per cent, 6.36 per cent 

and 9.86 per cent of the total area for 2003, 2009, 2015 and 2021 respectively (Table 4.4), 

corresponding to a variation of +140.7 per cent during the study period. Unlike 

Ouagadougou, the trend of agricultural lands was not linear in Bobo-Dioulasso. While 

there was a gradual and consistent growth between 2003 and 2015 represented by 79.59 
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per cent (2003), to 79.85 per cent (2009) and 84.99 per cent (2015), a decline to 80.69 per 

cent was recorded for 2021. The decrease of agricultural land in 2021 could be due to the 

0.68 per cent increase of forest area after a continuous decline from 15.58 per cent (2003) 

to 8.51 per cent (2015). The bare land had a global increase, whereas the water bodies 

decreased across the study period. 

Table 4.4: Proportion of LULC Classes in Bob-Dioulasso (% of the total area) 

LULC class 2003 2009 2015 2021 

Built 4.10 5.19 6.37 9.87 

Agricultural land 79.59 79.85 84.99 80.69 

Forest 15.58 14.25 8.51 9.19 

Bare 0.11 0.10 0.07 0.19 

Water 0.62 0.62 0.06 0.06 

             Source: Author’s data analysis (2023) 
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Figure 4.3 presents the evolution of LULC classes in the cities between 2003 and 2021. 

The figure shows a rapid expansion of built-up surfaces in Ouagadougou. The built-up 

expansion rate varied from 0.53 between 2003 and 2009 to 1.82 between 2009 and 2015 

and achieved 1.91 between 2015 and 2021. In Bobo-Dioulasso, the same trend applies 

but at a slower pace compared to Ouagadougou. The expansion rate fluctuated from 0.18 

to 0.2 and 0.58 between 2003 and 2009, 2009 and 2015 and 2015 and 2021, respectively. 

 

Figure 4.3: Land Use/Land Cover Evolution Between 2003 and 2021 

 

4.1.1.4. Land use/land cover intensity analysis 

The generated LULC maps for the years 2003, 2009, 2015 and 2021 were overlayed to 

create a transition matrix for each time interval. The matrices present the rates of 

change/conversion between the different LULC categories as a percentage of the total 

area. The diagonal entries represent persistence values of classes, while the off-diagonal 

entries indicate changes from one class to another. The last row represents the gross gains 

per category at the final year, while the last column indicates the gross loss for each 

category at the final year. Table 4.5 presents the transition matrix for Ouagadougou. 
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Table 4.5: Transition Matrices in Ouagadougou (% of total area) 

    2009     

  Agricultural Bare Built Forest Water 
Initial 

total 

Overall 

loss 

2
0

0
3
 

Agricultural 55.80 0.61 8.48 0.23 0.33 65.45 9.64 

Bare 0.05 0.18 0.16 0.00 0.00 0.39 0.21 

Built 4.47 0.93 27.29 0.00 0.06 32.75 5.46 

Forest 0.34 0.00 0.01 0.44 0.03 0.81 0.37 

Water 0.20 0.00 0.01 0.00 0.40 0.60 0.20 

Final Total 60.86 1.71 35.95 0.67 0.81 100.00  

Overall gain 5.06 1.54 8.66 0.23 0.41  15.90 
    2015     

  Agricultural Bare Built Forest Water 
Initial 

total 

Overall 

loss 

2
0

0
9
 

Agricultural 47.23 0.16 12.55 0.69 0.23 60.86 13.63 

Bare 0.19 0.50 1.02 0.00 0.00 1.71 1.21 

Built 2.43 0.32 33.19 0.00 0.01 35.95 2.76 

Forest 0.15 0.00 0.02 0.49 0.02 0.67 0.18 

Water 0.14 0.00 0.09 0.03 0.55 0.81 0.26 

Final Total 50.13 0.98 46.86 1.22 0.81 100.00  

Overall gain 2.90 0.48 13.68 0.73 0.26  18.05 
    2021     

  Agricultural Bare Built Forest Water 
Initial 

total 

Overall 

loss 

2
0
1
5
 

Agricultural 34.22 0.28 15.07 0.55 0.02 50.13 15.91 

Bare 0.05 0.33 0.59 0.00 0.00 0.98 0.64 

Built 2.82 1.37 42.62 0.04 0.02 46.86 4.25 

Forest 0.56 0.00 0.03 0.61 0.01 1.22 0.61 

Water 0.14 0.00 0.04 0.06 0.57 0.81 0.23 

Total 37.80 1.98 58.34 1.26 0.62 100.00  

Overall gain 3.58 1.65 15.73 0.65 0.05  21.64 

Source: Author’s data analysis (2023) 

 

The major transitions observed in Ouagadougou were from agricultural land to built-up, 

during the three periods. The rate of conversion of agricultural land to built-up area was 

higher between 2003 and 2009 (4.47 per cent of the landscape) and relatively low during 

the other two periods. The conversion of built-up areas to agricultural lands, shown in the 

matrices, could be explained by misclassification errors.  

As for Bobo-Dioulasso, the major transitions were from agricultural to forest areas (Table 

4.6). The results show that 6.24 per cent of the total landscape was converted to forest 
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land from 2003 to 2009, 8.23 per cent from 2009 to 2015, and 3.95 per cent from 2015 to 

2021. 

Table 4.6: Transition Matrices in Bobo-Dioulasso (% of total area) 

    2009     

  Agricultural Bare Built Forest Water 
Initial 

total 

Overall 

loss 

2
0

0
3
 

Agricultural 73.27 0.05 1.36 4.91 0.00 79.59 6.32 

Bare 0.05 0.03 0.03 0.00 0.00 0.11 0.08 

Built 0.30 0.01 3.79 0.00 0.00 4.10 0.31 

Forest 6.23 0.00 0.01 9.34 0.00 15.58 6.24 

Water 0.00 0.00 0.00 0.00 0.62 0.62 0.00 

Final Total 79.85 0.10 5.19 14.25 0.62 100.00  

Overall gain 6.58 0.06 1.40 4.91 0.00  12.95 
    2015     

  Agricultural Bare Built Forest Water 
Initial 

total 

Overall 

loss 

2
0
0
9
 

Agricultural 75.88 0.03 1.61 2.32 0.01 79.84 3.96 

Bare 0.05 0.03 0.01 0.00 0.00 0.10 0.06 

Built 0.44 0.00 4.74 0.00 0.00 5.19 0.45 

Forest 8.23 0.00 0.01 6.00 0.02 14.25 8.25 

Water 0.39 0.00 0.00 0.20 0.03 0.62 0.59 

Final Total 84.99 0.07 6.36 8.51 0.06 100.00  

Overall gain 9.11 0.04 1.62 2.52 0.03  13.31 
    2021     

  Agricultural Bare Built Forest Water 
Initial 

total 

Overall 

loss 

2
0
1
5
 

Agricultural 76.47 0.12 3.77 4.63 0.00 84.99 8.52 

Bare 0.01 0.06 0.00 0.00 0.00 0.07 0.01 

Built 0.27 0.01 6.08 0.00 0.00 6.36 0.28 

Forest 3.94 0.00 0.01 4.56 0.00 8.51 3.95 

Water 0.00 0.00 0.00 0.00 0.06 0.06 0.00 

Final Total 80.69 0.19 9.86 9.19 0.06 100.00  

Overall gain 4.22 0.13 3.78 4.63 0.00  12.76 

Source: Author’s data analysis (2023) 

 

a. Interval level 

Figure 4.4 presents the graphical representation of the interval level analysis results, 

which compare annual changes in intensity for all the area within each time interval.  
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A fast annual change in intensity was recorded in Ouagadougou between 2015 and 2021 

(3.61 per cent per year against 3.09 per cent as uniform intensity), while in Bobo-

Dioulasso it was fast between 2009 and 2015 (2.22 per cent, compared to a uniform 

intensity of 2.17 per cent). During the two other time periods, 2003-2009 and 2009 - 2015 

for Ouagadougou, and 2003 - 2009 and 2015 - 2021 for Bobo-Dioulasso, the annual 

intensity of change was slow.  

 

Figure 4.4: Interval Level Changes of Land Use/Land Cover Categories.  

 

b. Category level 

The category level analysis plots present the size and annual intensity of change of each 

category’s gain relative to the size of the category at the interval’s end time point. It also 

shows the size and annual intensity of each category’s loss in relation to the size of the 

category at the interval’s initial time point. The dotted vertical lines represent the uniform 

intensity rate, which provides information on the patterns of each category if the changes 

were uniform, for every time interval.  

Figures 4.5a and 4.5b present the graphical outputs of category analysis for each time 

interval in Ouagadougou. Built-up class was the largest gainer for all the time intervals, 

followed by bare and agricultural lands. The gain for built-up area increased continuously, 

from 8.6 per cent in 2003 - 2009, 13.68 per cent in 2009 - 2015 to achieve 15.73 per cent 

of the total landscape in 2015 - 2021. As for the annual change intensity, the uniform 
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intensity (St) values indicated an intensification of change from 2003 - 2009 (2.65 per 

cent) to 2015 - 2021 (3.61 per cent). Bare land, forest and built-up had active changes 

during the three-time intervals, with bare land having the most active gain (Gtj > St) in 

2003 - 2009 and 2015-2021, while forest gain was very active between 2009 and 2015 

and 2015 and 2021. Water class showed active gain between 2003 and 2009 and 2009 

and 2015. Concerning agricultural category, the gain intensity was dormant (Gtj < St) 

throughout the study period. 

In terms of loss in Ouagadougou, agricultural land had the largest loss in terms of area 

during the three-time intervals, followed by built-up and bare lands. Agricultural land loss 

consistently increased from 9.64 per cent in 2003 – 2009 to 13.63 per cent in 2009 - 2015 

and 15.91 per cent in 2015 - 2021. The active loss rates were recorded by agricultural, 

forest, bare land and water during 2009 - 2015 and 2015 - 2021. Built-up class was 

dormant, except in 2003 - 2009, where it showed a marginal loss in favour of bare land. 

Looking at the behaviour of each bar regarding the uniform rate, it emerged that less than 

half of the bar length for agricultural lands in 2009 - 2015 and 2015 - 2021 extend beyond 

the uniform rate, showing that the large size of area occupied by agricultural land in 2009 

and 2015 is the cause of its large loss. In the period 2003 - 2009, more than 50 per cent 

of forest and water bar lengths exceed the uniform rate, indicating that active change 

intensity is the reason explaining the two categories’ loss sizes. In each time interval, 

more than half of the bare land went beyond the uniform line, indicating that active 

intensity is more important than the size of bare land at the start time to explain the size 

of bare land’s loss. 

Figures 4.5c and 4.5d show the category level analysis plots in term of size and intensity 

of change for Bobo-Dioulasso. The larger gainers, in size, were respectively agriculture, 

forest and built-up during the three periods. The gains in agricultural land increased from 
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2003 (6.58 per cent) to 2015 (9.11 per cent) and decreased in 2021 (4.22 per cent) at the 

expense of forest area, which nearly doubled its gain compared to 2015 (2.52 per cent to 

4.63 per cent). Built-up surface gains increased regularly during the different time 

intervals, going from 1.4 per cent in 2003 - 2009 to 1.62 per cent in 2009 - 2015 and 3.78 

per cent in 2015 - 2021. The uniform rate showed a quasi-stationary change’s intensity 

during the different time intervals. As for the gain intensity, bare land, forest, and built-

up areas experienced the most active changes (Gtj > St). Agricultural change was dormant 

throughout the study period. In terms of loss, agricultural and forest areas were the larger 

losers. The intensity of loss for the forest category was active during the three periods. 

Bare land also experienced active loss during 2009 - 2015 and 2015 - 2021. The large 

loss in forest and bare areas could be explained by the very active change intensity 

because more than 50 per cent of the bar lengths exceed the uniform intensity rate. 
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Figure 4.5: Category Level Changes of Land Use/Land Cover: (a) Gain in 

Ouagadougou, (b) Loss in Ouagadougou, (c) Gain in Bobo-Dioulasso, (d) Loss in 

Bobo-Dioulasso  

 

c. Transition level 

Figure 4.6 shows the transition level changes for built-up gain and agricultural loss in 

Ouagadougou and Bobo-Dioulasso. The transition level analyses focused on built-up and 

agriculture categories because they are the dominant classes throughout the four time 

points. The gain and loss intensities are analysed regarding the deviation of each 

category’s intensity from the uniform intensity. When a category’s intensity is higher than 
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the uniform intensity, the transition targets that category; and when a category’s intensity 

is less than the uniform intensity value, the transition avoids that category. 

In Ouagadougou, the gain of built-up area targeted bare and agricultural lands (Rtin > Wtn) 

in all the time intervals (Figure 4.6a). The other classes were avoided (Rtin < Wtn). The 

major transition to built-up category came from bare land, with an increasing intensity 

(Rtin) going from 6.81 per cent in 2003 - 2009 to 9.91 per cent in 2009 - 2015 and 10.04 

per cent in 2015 - 2021. That could be explained by the greater transition intensity of bare 

land which largely exceeds the uniform line. As for agricultural loss, it targeted forest in 

all the time intervals, while in 2003 - 2009, and 2009 - 2015, water was also converted to 

agricultural land (Figure 4.6b). In addition, between 2003 and 2009 and 2015 and 2021 

bare land and built-up areas, respectively recorded some gains from agricultural land. The 

major gainer from agriculture was forest, with a peak intensity in 2009 - 2015. 

In Bobo-Dioulasso, the built-up class only gained from bare and agricultural lands (Figure 

4.6c). Indeed, the bare land class was targeted in 2003 - 2009 and 2009 – 2015 (Rtin =4.61 

per cent and 1.34 per cent respectively), while in 2015 – 2021 the agricultural class took 

over and started getting targeted (Rtin = 0.74 per cent) by built-up. The explanation for 

such a situation could be that people used all the bare land areas for building and started 

exploiting agricultural lands. It could also be caused by classification errors resulting in 

a confusion between bare and agricultural lands. The loss of agricultural land area 

occurred in favour of forest, bare land and built-up (Figure 4.6d). The loss targeted (Rtin 

> Wtn) bare land and forest. Built-up gain from agricultural was avoided in Bobo-

Dioulasso. This could be explained by the fact that the over-exploited agricultural areas 

got degraded with similar spectral characteristics as bare land. A few of these areas are 

used for building, pavement, road construction. 
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Figure 4.6: Transition Level Changes of Land Use/Land Cover: (a) Gain of Built in 

Ouagadougou, (b) Loss of agricultural in Ouagadougou, (c) Gain of Built in Bobo-

Dioulasso, (d) Loss of Agricultural in Bobo-Dioulasso  

 

4.1.2. LST and air temperature trend assessment 

4.1.2.1. Spatial distribution of day and night LST 

Figures 4.7 and 4.8 show the spatial distribution of yearly daytime, and night-time LST 

in Ouagadougou and Bobo-Dioulasso, respectively. The daytime LST showed high 

values in the city centre, the CBD area, while the outskirts recorded relatively low values 

with scattered hot spots of moderate to high LST values across the area. The high values 
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in the CBD are due to the presence of concrete surfaces across that area. In Ouagadougou, 

the yearly minimum day LST was 39.03°C and was recorded in 2008, while a maximum 

value of 40.52°C was recorded in 2021. For Bobo-Dioulasso, the minimum daytime LST 

was 37.55°C, recorded in 2012, whilst the maximum recorded was 38.60°C in 2021. The 

coolest year in terms of daytime LST was 2008 for Ouagadougou and 2012 for Bobo-

Dioulasso. Both sites experienced their hottest LST in 2021. 

The night-time LST figures present persistent heat island, which got increased over time, 

in the city centre. Unlike the daytime LST, the night-time one exhibits hot spots only at 

the CBD area of both cities. This situation can be explained by the increases in heat 

storage due to expanding concrete surface. In Ouagadougou, the minimum annual night-

time LST recorded was 19.60°C in 2008, while the maximum was 21.31°C in 2021. For 

Bobo-Dioulasso, the minimum night-time LST was 19.33 in 2008, and the maximum 

recorded was 20.49°C in 2021. During the study period, the minimum and the maximum 

LST, in both sites, were recorded in 2008 and 2021 respectively. In addition, 

Ouagadougou experienced higher LST values than Bobo-Dioulasso throughout the 

period, due to the high rate of concrete surface expansion, mainly built-up surfaces. 
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Figure 4.7: Distribution of Yearly Daytime (a) and Night-Time (b) LST in 

Ouagadougou  

 

(a) 

(b) 
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Figure 4.8: Distribution of yearly daytime (a) and night-time (b) LST in Bobo-

Dioulasso  

(a) 

(b) 
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4.1.2.2. Spatial distribution of yearly mean LST 

Figures 4.9 and 4.10 present the distribution of yearly mean surface temperature in 

Ouagadougou and Bobo-Dioulasso, respectively. Like the daytime and night-time LST, 

the mean maps show a persistent heat island in the cities’ centres. The minimum yearly 

average LST recorded in 2008 were 29.33°C in Ouagadougou and 28.49°C in Bobo-

Dioulasso. As for the maximum values, they were recorded in 2021 with 30.84°C in 

Ouagadougou and 29.51°C in Bobo-Dioulasso.  

 

Figure 4.9: Distribution of Yearly Mean LST in Ouagadougou  
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Figure 4.10: Distribution of Yearly Mean LST in Bobo-Dioulasso  

 

4.1.2.3. Temporal trends in LST  

Figure 4.11 which shows the evolution of yearly mean surface temperature indicates an 

increasing trend of LST from 2003 to 2021 for both cities. In Ouagadougou, the LST 

values are higher than they are for Bobo-Dioulasso. To give a deeper insight into the 

trends for the two sites, seasonal analysis was performed (Figure 4.12). Figure 4.12 shows 

that the surface temperature is increasing across all climatological seasons except June-

July-August (JJA) and December-January-February (DJF) which show decreasing trends, 

respectively for Ouagadougou and Bobo-Dioulasso. Looking at the Mann-Kendall trend 

test metrics (Table 4.2), it appears that the yearly average LST exhibits a non-significant 

increasing trend with a Sen’s slope of 0.18°C in Ouagadougou against 0.10°C in Bobo-

Dioulasso. That shows that the yearly LST is increasing at a faster rate in Ouagadougou 
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than Bobo-Dioulasso. Only the March-April-May (MAM) season shows a significant 

trend with a probability value (𝑝 −value) of 0.009, which is less than 0.05 in 

Ouagadougou. In Bobo-Dioulasso, all the 𝑝 −values are more than 0.05, meaning that the 

trend is non-significant. The seasonal analysis highlighted that the yearly LST increases 

is mainly driven by the MAM season (Figure 4.14) with a mean variation of 0.05°C for 

Ouagadougou as against 0.03°C for Bobo-Dioulasso (Table 4.7). Despite its non-

significant trend in the areas, the September-October-November (SON) season also 

contributes to the global yearly increasing trend of LST. 

 
Figure 4.11: Yearly Mean LST Evolution from 2003 to 2021  
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Figure 4.12: Seasonal Mean LST Evolution from 2003 to 2021  
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Table 4.7: Mann Kendall Trend Test Metrics for Surface Temperature 

Ouagadougou 

 Seasonal average 
Yearly 

average 

 DJF MAM JJA SON  

Z value 0 2.59 -0.48 1.04 1.82 

Sen's slope -0.00084 0.05 -0.01 0.030 0.018 

P value 1 0.009 0.62 0.29 0.068 

Trend Increasing Increasing Decreasing Increasing Increasing 

 

Bobo-Dioulasso 

 Seasonal average 
Yearly 

average 

 DJF MAM JJA SON  

Z value -0.27 1.75 0.07 1.12 1.26 

Sen's slope -0.02 0.03 0.001 0.038 0.010 

P value 0.77 0.08 0.94 0.26 0.20 

Trend Decreasing Increasing Increasing Increasing Increasing 

         Source: Author’s data analysis (2023) 

 

4.1.2.4. Temporal trends in air temperature  

Figure 4.13 presents the yearly trends in air temperature across Bobo-Dioulasso and 

Ouagadougou. There is an increasing trend in air temperature throughout the study time 

span over the two areas. The minimum yearly values recorded were 28.04°C in 

Ouagadougou and 27.04°C in Bobo-Dioulasso in 2008. The maximum values were 

recorded in 2021 with 29.32°C for Ouagadougou and 28.17°C for Bobo-Dioulasso. The 

Mann-Kendall test showed that the yearly temperature trend is non significant, because 

the 𝑝 −values are greater than 0.05 for both cities (Table 4.8). The trend was more 

pronounced in Bobo-Dioulasso than Ouagadougou, regarding the respective Sen’s slope 

values of 0.014°C and 0.018°C. 

The seasonal trend (Figure 4.14) showed an increasing trend for all climatological 

seasons, except the DJF season which depicted a decreasing trend for both cities. The 
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MAM season showed the highest trend with a 𝑝 −values of 0.012 for Ouagadougougou 

and 0.021 for Bobo-Dioulasso (Table.4.8). It was followed by the JJA season which 

presented a non-significant trend.  

As for the surface temperature, the yearly global trend is engineered by the MAM season 

which showed an average temperature increase of 0.052°C in Ouagadougou and 0.047°C 

in Bobo-Dioulasso during the study period. 

 
Figure 4.13: Yearly Mean Air Temperature Evolution  
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Figure 4.14: Seasonal Mean Air Temperature Evolution  
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Table 4.8: Mann Kendall Trend Test Metrics for Air Temperature 

Ouagadougou  

 Seasonal average 
Yearly 

average 

 DJF MAM JJA SON  

Z value -0.350 2.519 0.630 0.140 1.050 

Sen's slope -0.006 0.052 0.014 0.003 0.014 

P value 0.726 0.012 0.529 0.889 0.294 

Trend Decreasing Increasing Increasing Increasing Increasing 

 

Bobo-Dioulasso 

 Seasonal average 
Yearly 

average 

 DJF MAM JJA SON  

Z value -0.210 2.309 1.749 0.280 1.679 

Sen's slope -0.011 0.047 0.023 0.014 0.018 

P value 0.834 0.021 0.080 0.780 0.093 

Trend Decreasing Increasing Increasing Increasing Increasing 

      Source: Author’s data analysis (2023) 

 

4.1.2.5. Spatial distribution of SUHI in the study area 

The LST anomaly between the city centre and the surrounding areas showed high values 

in the city core. During the study period, the daytime SUHI, at 1 square kilometre pixel 

scale, fluctuated between -0.098°C (2017) and 0.071°C (2015) in Ouagadougou, while in 

Bobo-Dioulasso, it oscillated between -0.092°C (2004) and 0.072°C (2019) Concerning 

the night-time SUHI, the values varied between -0.073°C (2021) and 0.11°C (2007) in 

Ouagadougou, and between -0.069°C (2011) to 0.080°C (2009) in Bobo-Dioulasso. Like 

the LST, the SUHI maps showed heat hotspots at the city centre and relatively cool 

hotspots at the surrounding areas. SUHI is more pronounced during night-time with a 

strong heat island covering the inner city, particularly in Ouagadougou (Figure 4.15). In 

Bobo-Dioulasso, strong heat island is found in the city centre and water areas during 

night-time (Figure 4.16). 
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Figure 4.15: Distribution of Yearly Daytime (a) and Night-Time (b) SUHI in 

Ouagadougou  

(a) 

(b) 
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Figure 4.16: Distribution of Yearly Daytime (a) and Night-Time (b) SUHI in 

 Bobo-Dioulasso 

(a) 

(b) 
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4.1.2.6. SUHI trend in the study area 

The SUHI intensity, plotted according to the distance from the city centre, showed that 

the closer it is to the centre, the higher the intensity (Figure 4.17). The dotted horizontal 

line indicates the 0 zero value. There was a uniform trend throughout the study period 

with differences between daytime and night-time. Daytime SUHI increased in the inner 

city (1 – 6 kilometres for Ouagadougou and 1 – 3 kilometres for Bobo-Dioulasso). The 

break at 2 kilometres in Ouagadougou indicates the urban dams and forest areas. After 

the peak at 6 kilometres and 3 kilometres in the respective cities, the SUHI decreased up 

to 20 kilometres with some breaks due to water and forest areas. During night-time, the 

SUHI decreased from the city centre towards the periphery, with some breaks in Bobo-

Dioulasso. 

 
Figure 4.17: SUHI Intensity Patterns According to the Distance from the  

 City centre 
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4.1.2.7. Correlation between LST and air temperature 

In order to establish the relationship between LST and 2 metres above ground air 

temperature, a t-Test was performed to study the difference in mean values of the two 

variables. Table 4.9 presents the results of the test. The 𝑝 −value of the test is less than 

0.05 in both cities, indicating that there is a significant difference between the LST and 

the air temperature in terms of mean values. The average difference was 1.42 for 

Ouagadougou and 1.38 for Bobo-Dioulasso. The 95 per cent confidence interval lies 

between -1.54 and -1.31 for Ouagadougou and between -1.49 and -1.26 for Bobo-

Dioulasso, which exclude the value zero. Based on the confidence interval, there is a 

significant difference between the mean values of the two datasets. 

Table 4.9: Outputs of T-Test Between Surface and Air Temperature 

Metric  Ouagadougou Bobo-Dioulasso 

Confidence interval -1.54 to -1.31 -1.49 to -1.26 

F-statistics 0.57 0.36 

Mean LST 30.07 29.08 

Mean air Temp. 28.65 27.70 

p-value P<0.05 P<0.05 

Mean difference 1.42 1.38 

       Source: Author’s data analysis (2022) 

 

Furthermore, a correlation analysis was performed to determine the level of relationship 

between LST and 2 metres above ground air temperature. The scatterplots presented in 

Figure 4.18 show a non-linear regression between air temperature and LST. The two 

variables have a strong positive correlation in both cities throughout the study time span. 

The Spearman correlation coefficient was 0.76 in Ouagadougou and 0.83 in Bobo-

Dioulasso. Then, the correlation analysis showed a significant (p<0.05) positive 

correlation between the variables, indicating that when the LST increases, the air 
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temperature also increases. Thus, the coefficients of determination R2 showed that 58 per 

cent and 69 per cent of the increase in air temperature in Ouagadougou and Bobo-

Dioulasso respectively, from 2003 to 2021, could be explained by the increase of the LST 

during the period. 

 

Figure 4.18: Daily LST and Air Temperature Regression 

 

4.1.3. Land Use/Land Cover and LST relationship 

4.1.3.1. Land Use/Land Cover and LST patterns 

Figures 4.19 and 4.20 present the spatial distribution of the pure pixels (100 per cent built 

and 100 per cent non-built) in relation to LST. The pixels that are covered by pure built-

up class increased while the pure non-built-up pixels decreased from 2003 to 2021 in both 

cities. The number of pure built-up pixels were 55, 39, 67, and 67 respectively in 2003, 

2009, 2015 and 2021 for Ouagadougou (Figure 4.19). For Bobo-Dioulasso, the number 

of pure built-up pixels varied from 15 in 2003 to 21 in 2009, 29 in 2015, and reached 44 

in 2021 (Figure 4.20). The expansion in the number of pure built-up pixels co-occurred 
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with the increasing of LST from the city core towards the outskirts, at the expense of the 

pure non-built pixels. The relative low number of built-up pixels in Bobo-Dioulasso 

compared to Ouagadougou indicates a more rapid concrete surface formation and then 

higher LST values in Ouagadougou than Bobo-Dioulasso. Thus, there is a close link 

between the type of LULC within a 900×900 square metres grid and the average 

temperature at the surface at this grid. 

 

Figure 4.19: Spatial Distribution of Pure Built-Up and Non-Built-Up 

Pixels in Ouagadougou 
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Figure 4.20: Spatial Distribution of Pure Built-Up and Non-Built-Up 

Pixels in Bobo-Dioulasso 

 

Figure 4.21 presents the fluctuation of LST according to the percentage of built and non-

built coverage in each 900 × 900 square metres grid. Indeed, the pixels covered totally by 

built-up area have a high surface temperature, while the temperature is low for those with 

of 100 per cent non-built coverage. Globally, when the non-built-up coverage increases, 

the LST shows a regressive variation. A large proportion of non-built-up area in a pixel 

indicates a decrease in LST while a larger built-up area implies an increase of surface 

temperature. The LST variation pattern regarding the rate of built-up and non-built-up 

coverage in a pixel was linear in Ouagadougou throughout the study period.  

However, in Bobo-Dioulasso, particularly in 2003 and 2009, the pattern was non-linear. 

This could be due to the intervention of other factors influencing the LST such as soil 

moisture, wind or high heat capacity surfaces in areas with higher non-built-up cover in 
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Bobo-Dioulasso. The difference in LST between a fully built-up pixel and an entirely 

non-built-up pixel varied from 1.47°C to 1.87°C in Ouagadougou against 1.02°C to 

1.27°C in Bobo-Dioulasso. These different values experienced decreases from 2003 to 

2021 in both cities, showing that the LST in all LULC classes increased. 

 

Figure 4.21: Built-Up and Non-Built-Up Surface Temperature Patterns  

 

The analysis of LST and LULC patterns showed that the built-up areas present higher 

LST than non-built-up areas such as forest, water bodies and farmland. The LST trend 

throughout the study period showed that Ouagadougou was warmer than Bobo-

Dioulasso, because Ouagadougou had greater built-up cover, compared to other LULC 

classes, than Bobo-Dioulasso. Indeed, the built-up cover varied from 32.75 per cent in 
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2003 to 35.95 per cent in 2009, 46.86 per cent in 2015 and 58.34 per cent in 2021 for 

Ouagadougou. However, for Dobo-Dioulasso, the built-up area occupied 4.10 per cent, 

5.19 per cent, 6.36 per cent and 9.86 per cent of the area in 2003, 2009, 2015 and 2021 

respectively.  

At the pixel scale, the LST increased with the proportion of built-up (settlement and bare 

land) within the pixel, while decreasing with the non-built cover rate. There was a 

decrease in the average LST difference between a pixel fully covered by built-up and a 

pixel entirely covered by non-built-up class, indicating a general warming of all the 

landscape units.  

 

4.1.3.2. Correlation between LST and LULC rate 

The correlation between LST and LULC rates was performed to measure the strength of 

relationship existing between the two variables. Figure 4.22 shows the scatterplots and 

the correlation statistics between LST and built-up cover rate in a grid of 900×900 m2. 

The figures show that there is a positive relationship between the LST and the different 

built cover rates: the higher the built cover rate in a pixel, the higher the corresponding 

LST value. The strength of correlation was moderate (Schober and Schwarte, 2018) for 

all the four years, with a correlation coefficient varying from 0.44 to 0.64 for 

Ouagadougou against 0.49 to 0.61 for Bobo-Dioulasso. Indeed, 19.36 per cent to 40.96 

per cent of the LST increases in both cities, from 2003 to 2021, was due to the 

predominance of built-up cover in the area.  
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Figure 4.22: Correlation Between LST and Built-Up Cover Rate  

 

Concerning the non-built-up cover, the correlation with the LST is negative (Figure 4.23). 

The correlation coefficients varied between -0.41 and -0.6 for Ouagadougou against -0.49 

and -0.59 for Bobo-Dioulasso, showing a moderate negative correlation for both cities. 

The presence of non-built-up surface within a given pixel contributes to reduce the LST 

of that pixel: the higher the non-built-up proportion in the pixel, the lower the LST value.  

Thus, from 2003 to 2021, 16.81 per cent to 36 per cent of the urban cooling related to 

surface temperature was linked to the presence of non-built-up lands such as forest, 

agricultural land and water bodies. Like the case of the built-up cover, the strength of the 

correlation decreased from 2003 to 2021 in the two cities.  
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Figure 4.23: Correlation Between LST and Non-Built-Up Cover Rate  

 

4.1.3.3. Cooling effects of non-built cover 

Figure 4.24 shows the cooling effects of non-built-up surfaces in the study area from 2003 

to 2021. The figure informs that the higher the median difference, the higher the cooling 

effect of the non-built cover rate. The non-built-up pixels' contribution to cooling varies 

according to the sites. It was lower in Bobo-Dioulasso (0.29 - 1.39°C) than in 

Ouagadougou (0.74 - 1.94°C). The highest contribution of non-built-up class to cooling 

was recorded in 2009 for Ouagadougou and 2003 for Bobo-Dioulasso.  
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Figure 4.24: Contribution of Non-Built-Up Cover to Urban Cooling  

 

In Ouagadougou, the cooling effect of non-built-up surface decreased from 2003 to 2021. 

With at least 21 per cent -40 per cent of non-built-up coverage in a pixel of 900×900 

square metres, a surface cooling of more than 1°C was produced across the four years. 

However, in Bobo-Dioulasso, the non-built-up effect on cooling was not linear 

throughout the years. In 2003, 2009 and 2021, the cooling declined between 21 per cent 

coverage and 80 per cent coverage, and later peaked with 81 per cent -100 per cent 

coverage. Only the year 2015 showed a regular pattern in terms of cooling effects of non-

built-up coverage. More than 1°C of surface cooling was achieved with 21 per cent -40 

per cent coverage in 2003, 61 per cent -80 per cent coverage in 2015, while 2009 and 

2021 surface cooling was less than 1°C for all the five non-built-up cover classes.  

 

4.1.4. Relationship between LST and diseases  

The relationship between LST and the number of reported cases of malaria, dengue and 

meningitis was computed. The monthly reported cases from the five districts of 

Ouagadougou and the three districts of Bobo-Dioulasso were used with the yearly mean 

surface temperature per district. 
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4.1.4.1. Evolution of selected public diseases reported cases from 2017 to 2021 

Figures 4.25 and 4.26 present the evolution of the reported cases per month in 

Ouagadougou and Bobo-Dioulasso respectively. In Ouagadougou, malaria exhibited one 

peak in October, and dengue showed a peak between October and November. In Bobo-

Dioulasso, malaria showed two peaks during the year: one in February and the other one 

in October, while dengue’s peak was found between October and November as in 

Ouagadougou. As for meningitis, the figures show two peaks in both cities, one occurring 

between February and May, and a second one in October. The peak occurrence of the 

diseases corresponds to the dry hotter periods of the year when the surface receives and 

stores more solar radiation. The energy stored could serve to create suitable environment 

for the diseases’ vectors evolution. 

 
Figure 4.25: Evolution of Monthly Reported Cases in Ouagadougou 
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Figure 4.26: Evolution of Monthly Reported Cases in Bobo-Dioulasso 

 

4.1.4.2. Correlation between surface temperature and selected public diseases 

The level of the relationship between LST and diseases was assessed through a correlation 

analysis. Figure 4.27 presents the scatterplot of the correlation between LST and the 

diseases in Ouagadougou and Bobo-Dioulasso from 2017 to 2021. Malaria and dengue 

had a weak to negligible correlation with LST in the two cities. In the districts of 

Bogodogo, Nongr-Massom, Sig-Noghin, Do and Konsa when the LST increased, the 

number of reported malaria cases decreases. In the case of dengue, all the districts except 

Nongr-Massom and Konsa showed an increase in the number of cases when the surface 

temperature increases. Concerning the meningitis, the scatterplots indicate a strong 

positive correlation (Do) to moderate positive correlation (Dafra, Konsa, Sig-Noghin), 

and negligible negative correlation (Baskuy, Bogodogo, Boulmiougou, Nongr-Massom) 

with the surface temperature.  
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Figure 4.27: Correlation Between Surface Temperature and Diseases  
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4.1.5. Future LULC and LST patterns 

4.1.5.1. Driving variables for LULC changes 

The LULC changes driver variables considered for the prediction were composed of 

distance from river, distance from road, distance from urban, elevation, slope and 

evidence likelihood for Ouagadougou (Figure 4.28) and Bobo-Dioulasso (Figure 4.29). 

These variables were considered to run the transition potentials different LULC classes. 

 

 

 

Figure 4.28: LULC Change Driver Variables in Ouagadougou  

 

 



  

122 
 

 

 

 

Figure 4.29: LULC Change Driver Variables in Bobo-Dioulasso  

 

4.1.5.2. Model validation 

To validate the MLP-NN-MC model, the LULC maps of 2021 were simulated using the 

changes between 2009 and 2015. The accuracy assessment performed showed an overall 

accuracy (Kno) of 0.80 and 0.92 for Ouagadougou and Bobo-Dioulasso respectively. The 

model ability to identify correct locations of changes (Klocality) was evaluated at 0.75 for 

Ouagadougou and 0.92 for Bobo-Dioulasso. 

Though there are some discrepancies between the simulated and classified maps of 2021, 

the accuracy values achieved indicate that the model performs well in predicting future 
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LULC changes. Figure 4.30 presents the classified and simulated maps for 2021 in 

Ouagadougou (4.30a) and Bobo-Dioulasso (4.30b).  

 

Figure 4.30: Classified and Simulated LULC for 2021 in Ouagadougou (a) and 

Bobo-Dioulasso (b) 

 

The comparison between the classified and simulated maps of 2021 showed an 

underestimation of built-up and bare land areas, while agricultural lands were 
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overestimated in both cities (Table 4.10). The model revealed a decreased in forested area 

in Ouagadougou against an increase in Bobo-Dioulasso. 

Table 4.10: Area Statistics of Classified and Simulated LULC of 2021 

Ouagadougou 

LULC 

class 

2021 classified 2021 simulated Difference 

km2 % km2 % km2 % 

Built-up 566.00 58.34 560.55 57.78 -5.45 -0.56 

Agricultural 366.67 37.79 386.06 39.79 19.39 1.99 

Forest 12.22 1.26 11.84 1.22 -0.38 -0.04 

Bare land 19.24 1.98 3.85 0.39 -15.40 -1.58 

Water 5.98 0.61 7.82 0.80 1.84 0.119 

 

Bobo-Dioulasso 

LULC 

class 

2021 classified 2021 simulated Difference 

km2 % km2 % km2 % 

Built-up 175.33 9.86 143.54 8.07 -31.80 -1.79 

Agricultural 1434.01 80.69 1436.30 80.82 2.29 0.13 

Forest 163.33 9.19 195.06 10.97 31.72 1.78 

Bare land 3.44 0.19 1.23 0.07 -2.22 -0.12 

Water 1.04 0.05 1.04 0.06 0.00 0.00 

   Source: Author’s data analysis (2023) 

 

4.1.6. Future LULC patterns 

The projection of LULC under the BAU scenario in both cities showed that the built-up 

class will continue to extend towards the peripheral areas. There will also be a persistence 

and densification of built-up areas in the inner city. Figure 4.31 shows the spatial 

distribution of the different LULC classes in 2027 and 2050 for both cities. 
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Figure 4.31: Predicted LULC for 2027 and 2050 Under BAU Scenario in 

Ouagadougou (a) and Bobo-Dioulasso (b)  

 

The prediction of LULC based on the BAU scenario revealed that, in Ouagadougou, the 

landscape will be dominated by built-up class with 65.27 per cent of coverage in 2027 

and 78.65 per cent in 2050 (Table 4.11). The increasing trend of built-up areas will be 

experienced at the expense of agricultural lands which will occupy only 19 per cent of 

the landscape in 2050. In Bobo-Dioulasso, the major future changes will concern the 
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built-up class whose extent will increase and cover 9.56 per cent and 13.85 per cent of 

the area in 2027and 2050, respectively. As in Ouagadougou, agricultural class in Bobo-

Dioulasso will decrease but remain the dominant class in 2050 with 73.74 per cent of 

coverage. 

Table 4.11: Area Statistics of Predicted LULC of 2027 and 2050 

LULC 

class 

Ouagadougou Bobo-Dioulasso 

2027 (%) 2050 (%) Δ % 2027 (%) 2050 (%) Δ % 

Built-up 65.27 78.65 13.38 9.56 13.85 4.29 

Agricultural 32.45 19.09 -13.36 78.41 73.74 -4.67 

Forest 1.22 1.22 0.00 11.89 12.27 0.38 

Bare land 0.25 0.23 -0.01 0.07 0.07 0.00 

Water 0.80 0.80 0.00 0.06 0.06 0.00 

     Source: Author’s data analysis (2023) 

 

4.1.7. Future LST patterns based on predicted LULC  

Based on the predicted LULC for 2027 and 2050, the LST maps for the same years were 

generated using a multiple linear regression model. The regression models built based on 

the LST and LULC rate of the years 2003, 2009, 2015 and 2021 are presented in Equation 

(4.1) and Equation (4.2) respectively for Ouagadougou and Bobo-Dioulasso. 

𝐿𝑆𝑇 = 30.13 + 0.0073 × 𝑏𝑢𝑖𝑙𝑡_𝑢𝑝 − 0.0047 × 𝑛𝑜𝑛_𝑏𝑢𝑖𝑙𝑡_𝑢𝑝 + 0.68  (4.1) 

𝐿𝑆𝑇 = 29.47 + 0.006 × 𝑏𝑢𝑖𝑙𝑡_𝑢𝑝 − 0.0014 × 𝑛𝑜𝑛_𝑏𝑢𝑖𝑙𝑡_𝑢𝑝 + 0.48  (4.2) 

The results of the LST prediction for 2027 and 2050 in the two cities are presented in 

Figure 4.32. The predicted LST showed an increase in 2027 and 2050 in both cities. The 

increase will be about 0.3°C and 0.14°C respectively for the periods 2021 – 2027 and 
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2027 – 2050 in Ouagadougou. In Bobo-Dioulasso, the increase was 0.32°C between 2021 

and 2027 and 0.01°C for 2027 – 2050. 

 

Figure 4.32: Trend in Mean LST for 2021, 2027 and 2050 Under the BAU Scenario 

in Ouagadougou and Bobo-Dioulasso 
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4.2. Discussions  

4.2.1. LULC change in the study area 

The analysis of LULC patterns revealed that the landscape experienced changes towards 

built-up area increase at the expense of agricultural lands (i.e., cultivated lands including 

seasonal, permanent crops and fallows, shrubland, grassland) and bare land in 

Ouagadougou and in Bobo-Dioulasso. These dynamics indicate ongoing urbanisation 

induced human footprint intensification in the areas.  

The urbanisation process in the area is characterized by the horizontal expansion of the 

cities and an increasing population due to natural growth, rural-urban migration and 

smaller town to larger city migration. For example, it is estimated that in 2019, 45.1 per 

cent and 19.1 per cent of the country’s total urban population lived in the Centre Region 

(with Ouagadougou as the biggest city) and the Haut-Bassins region (with Bobo-

Dioulasso as biggest city), respectively (INSD, 2022a), with a net migration rate of 4 per 

cent per year in Ouagadougou (Sory, 2019). This rapid urban population growth could be 

one of the driving factors of the landscape changes, as rapid population increase causes 

high demand in land and consequently leads to LULC changes (Al Kafy et al., 2019). The 

changes in LULC classes in favour of built-up areas were also recorded in other urban 

settings (Mahmoud et al., 2016; Bhat et al., 2017; Rimal et al., 2018). Furthermore, the 

conversion of agricultural land to roads (a component in built-up class) causes the 

displacement of arborists with their trees to resettle along the road-faced walls of some 

administrations.  
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4.2.2. Built-up expansion in the study area 

The city of Ouagadougou is experiencing a rapid settlement expansion (Figure 4. 33), 

while in Bobo-Dioulasso, the built-up area is rather increasing slowly (Figure 4.34). The 

cities have extended beyond their administrative boundaries into surrounding districts or 

villages, particularly in Ouagadougou. A similar situation was reported for Kumasi 

metropolitan city (Ghana), where urban development was found to have gone beyond its 

official boundaries (Hackman et al., 2020). The expansion of built areas varies according 

to the district and is more and more pronounced towards the city outskirts. If the current 

situation remains unchanged, the built-up areas ‘expansion will continue towards the 

peripheral zones in 2027 and 2050. This result is in agreement with the study of 

Yangouliba et al. (2022) which concluded that built-up area will experience a continuous 

spatial growth up to 2050 under BAU scenario. 

 

Figure 4.33: Built-Up Expansion Between 2003 and 2021 in Ouagadougou  
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Figure 4.34: Built-Up Expansion Between 2003 and 2021 in Bobo-Dioulasso  

 

Given the adverse effects of climate change, causing difficulties in finding alternative 

non-agricultural livelihood options, the rural population migrate to the cities to look for 

new sources of livelihood. Once in the city, not having resources to afford good housing, 

they settle in the peripheral slum’ areas, making the city expand horizontally. Since new 

population is coming into the city, the number of inhabitants increased year by year. It is 

reported that Ouagadougou welcomes around 100,000 additional people per year (Boyer 

and Delaunay, 2009) and given the insufficient housing offer policy, most of the 

newcomers establish their houses in the peri-urban areas. This situation contributes to the 

development of informal neighbourhoods around the city.  

Furthermore, since 2009 there is a land speculation process driven by private real estates 

companies. Indeed, with the authorizations from the government agencies, they buy land 

at low-cost prices from farmers in the peripheral areas, subdivide into plots and sell to 
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individuals. From 2009 to 2019, a total of 275 land/real estate development approvals 

were issued to private companies (Sory, 2019). This context of high demand of land for 

construction linked to population growth leads to an increasing expansion of built-up 

areas (Niya et al., 2019). 

The rapid expansion of built- up areas has potential negative implications on urban 

agricultural production. This is because areas previously used for urban gardening, water 

pathways and urban green areas are being converted to concrete buildings. That 

conversion process also leads to an increase in impervious surfaces exposing the 

population to hazards such as flooding and Urban Heat Island (Gogoi et al., 2019). In 

addition, the rapid urban settlement expansion has resulted in limited goods and services 

provision in the peripheral areas (Turok and McGranahan, 2013), highlighting the 

inadequacy between urban development and economic growth in most of the developing 

world’s cities (Cohen, 2006). The World Bank revealed that in unplanned areas around 

cities, the quality of life is deteriorated due to the poor housing systems, insufficient road 

network, and inadequate water and sanitation supply (World Bank, 2002). This situation 

was also reported by the United Nations which stated that rapid urban growth and its 

inherent consequences are common phenomenon in many African cities because they are 

expected to record the highest growth rate in the coming 30 years (United Nations, 2018).  

The LULC dynamics may have some uncertainties due to the low number of samples and 

the aggregation of some classes into one (as in the case of seasonal croplands, permanent 

croplands, fallow lands, shrublands and grasslands which were combined to form the 

agricultural land class). In this study, more samples were collected in Ouagadougou than 

Bobo-Dioulasso due to the limited availability of clear high-resolution historical images 

in Google Earth Pro. This situation may have affected the accuracy of the produced LULC 
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maps, particularly for Bobo-Dioulasso, which showed low overall accuracies across the 

four years. In addition, the majority filtering bias is towards the classes labelled with least 

values (minimum values were returned in cases where there are no majority votes). 

However, the bias level is relatively low given the high accuracy values of the majority 

filtered images (> 80% in both sites), and the fact that the area is dominated by built-up 

(in Ouagadougou) and agricultural lands (in Bobo-Dioulasso).  

Despite these limitations, this study is a valuable spatial decision tool in terms of LULC 

for regulating built-up expansion by promoting vertical building policy and preserving 

natural surfaces within urban areas. Given the increasing population growth in urban 

areas which increases the housing demand, a low-income housing policy could mitigate 

urban sprawl. The use of high spatial resolution images with more reference samples can 

improve the accuracies and allow more detailed LULC classification in the area.  

 

4.2.3. LST and air temperature relationship in the study area 

4.2.3.1. Trends in LST and air temperature in the study area 

The rapid urbanisation occurring in the study leads to a modification of the thermal 

conditions of surface materials which causes an unbalanced energy budget over urban 

areas. Consequently, LST values are increasing, mainly in urban core where the surface 

is covered by impervious materials. The findings from this research showed that LST is 

continuously increasing in both cities. LST showed an increasing trend, which is naturally 

greater in Ouagadougou, the most urbanised area of the country, than Bobo-Dioulasso. 

The continuous increase of LST in the urban area was particularly persistent in the city 

centre where consistent heat island was formed because of the dominance of impervious 

surfaces. Conversely, the peripheral areas, mainly occupied by non-concrete surfaces 

including cultivated lands including seasonal, permanent crops and fallows, shrubland 
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and grassland, exhibited a relatively low LST values. Unsurprisingly, the positive trend 

of LST in both cities will continue as the LULC is changing towards the expansion and 

densification of built-up areas. The results of this study are in line with the global LST 

trend, which increased by 0.2°C per decade during the past 25 years (ESA, 2022). They 

are in agreement with the studies of Tafesse and Suryabhagavan, (2019) and Singh et al. 

(2017) which showed that the development of impervious surfaces at the expense of 

vegetation due to urbanisation leads to increases in LST in the urban core. These findings 

are also in line with results from similar studies on urban LST patterns in Nigeria (Fashae 

et al., 2020) and in Ghana (Stemn and Kumi-Boateng, 2020) which highlighted that LST 

in the urban core is higher than the peripheral areas. Moreover, these results also confirm 

the findings of Di Leo et al. (2016) who concluded that LST values are lower in vegetated 

areas than adjacent impervious lands. 

The seasonal patterns showed that the global increase of LST throughout the study period 

is driven by the March-April-May (MAM) season. This is because the MAM season 

corresponds to the dry and hot periods in the region where the net radiation is greater in 

the inner city, because of general clear sky conditions, and particularly the low surface 

reflectance due to the predominance of high heat storage materials (Offerle et al., 2005).  

Like the LST, the 2 meters above ground temperature also experienced an increasing 

trend between 2003 and 2021 in both study sites. The increasing air temperature in both 

sites is in agreement with regional and global studies, which showed rising average 

temperatures in the area (Ilori and Ajayi, 2020; IPCC, 2021). The inherent consequences 

of urbanisation such as population growth and LULC changes towards built-up surfaces, 

caused an increase of Greenhouse gas emission in the atmosphere. In fact, the use of fossil 

fuel (for energy production, transportation, factories), the production of waste, and 
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domestic heating contribute to increase the urban environmental temperature, as found 

by Rimal et al. (2017). 

 

4.2.3.2. Trends in SUHI in the study area 

The high increase of LST in urban core compared to the surrounding areas causes an 

intensification of SUHI. The results of this research showed that SUHI intensity values 

increased towards the inner cities. This situation could be explained by the presence of 

administrative, business and habitation areas, which operate mainly on concrete and 

water-resistant surfaces. This finding agrees with that of Simwanda et al. (2019) who 

concluded that in growing cities in Africa , the CBDs exhibit high SUHI intensities. In 

the CBD area, large high thermal capacity surfaces are exposed to solar heating because 

of the vertical structure of buildings, while the peripheral rural areas heat rapidly with a 

limited heat storage due to low heat capacity as showed by Offerle et al. (2005).  

Similar results were found by Dewan et al. (2021) who demonstrated that the major 

drivers of SUHI increase in the urban core included insufficiency of vegetation and 

expanded built-up cover. At night-time, the water bodies and wetlands showed high 

SUHI, while vegetated areas presented a low SUHI, because of the high heat capacity of 

water, which takes long time to absorb the heat and releases it back slowly in the 

atmosphere. These findings agrees with the result of Lindén (2011), which concluded that 

open water contributes to daytime cooling, while evapotranspiration from vegetation is 

responsible for night time cooling. Furthermore, Mirzaei et al. (2020) showed that water 

bodies and vegetation contribute to regulating the surface temperature and consequently 

the air temperature in urban settings. 
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Urban areas comprise complex landscapes of different size materials which record 

different LST values. A limitation of the study is related to the coarse spatial resolution 

of MODIS data (1000 m) used which did not allow a detailed mapping to extract the LST 

values of smaller urban surface units.  

Nevertheless, this research showed the areas where LST is high and those with low values 

in the study area and in urban settings in general. Like air temperature, LST and SUHI 

increase constitute a threat to urban environment and inhabitants. Then, LST and SUHI 

mitigation strategies should be developed through the development of non-concrete 

surfaces in urban core areas mainly, to reduce the LST differences with the surroundings. 

 

4.2.3.3. Correlation between LST and air temperature  

In the study area, LST was higher than 2 m above ground air temperature, and the 2 

variables had a strong positive correlation, meaning that when LST increases, air 

temperature also increases. It is found in literature that LST is often higher than the 

ambient air temperature measured by weather stations and felt by humans (Heat and 

Protocol, 2015), but the two variables vary at the same direction and have a positive 

correlation (Guha et al., 2020). The average difference between the LST and air 

temperature (∆) is relatively higher in Ouagadougou (1.42°C) than Bobo-Dioulasso 

(1.38°C). ∆ is driven by shortwave incoming solar radiation, soil moisture, vegetation 

cover and therefore the partitioning of energy into Latent Heat Flux (LHF) and Sensible 

Heat Flux (SHF) (Forzieri et al., 2018). Thus, the lower the average SHF, the lower the 

LST and consequently ∆. The cities are located in low latitudes and are all constantly 

exposed to quasi-vertical incidence of solar radiation throughout the year, which implies 

high average LST and air temperature as showed by Gogoi et al. (2019). In addition, the 

quasi-similarity of ∆ in the two cities could be explained by the fact that both experience 
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the same climatic conditions, except that Bobo-Dioulasso has less built-up cover 

indicating a higher LHF than Ouagadougou (Figure 4.35).  

 
Figure 4.35: Partition of Energy in Latent and Sensible  

Heat Fluxes in the Study Area 

 

Air temperature gets more and more warmer due to Greenhouse gases accumulation in 

the atmosphere. The positive correlation found between LST and 2 m above ground air 

temperature shows that the surface thermal conditions can contribute to increase air 

temperature. This finding is then a key information for policy implementation towards 

LST mitigation to avoid urban atmospheric warming intensification. 

 

4.2.4. Relationship between LULC rate and LST 

LULC changes influence LST so that concrete surfaces exhibit high values compared to 

naturally undisturbed areas. Therefore, areas where the human footprint is high in terms 

of built-up surfaces, record high LST values while zones with natural cover show low 

LST. The findings from this study showed that the patterns of LST in both cities is mainly 
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dependent on the LULC types and dynamics, which modify the surface thermal properties 

through the increase of built-up areas. LST increased while the proportion of built-up 

increased in a pixel. This could be explained by the increasing of low albedo materials 

(for instance, building, pavement, asphalt for tarred roads) at the surface, implying low 

reflection of incident radiation as confirmed by Andrés-Anaya et al. (2021). Indeed, 

between 2017 and 2020, 130 km and 8 km of tarred roads were planned to be built in 

Ouagadougou and Bobo-Dioulasso respectively (PNDES, 2016). These results 

corroborate that of Simwanda et al. (2019), who found in Lagos (Nigeria), Lusaka 

(Zambia), Nairobi (Kenya) and Addis Ababa (Ethiopia) that cities having high proportion 

of impervious surfaces such as built-up were the warmest. In addition, other variables 

such as decrease of vegetation cover and soil moisture (reduction of water body, increased 

runoff) have the potential to reduce the LHF and consequently increase the SHF resulting 

in an increase of LST (Mitchell, 2011; Kandel, 2015;  Jiang et al., 2015).  

Built-up surfaces were positively correlated with LST for Ouagadougou and Bobo-

Dioulasso. Previous studies which assessed the link between LST and NDBI also found 

a positive correlation (Pal and Ziaul, 2017; Imran et al., 2021). The correlation coefficient 

value decreased from 2003 to 2021 in Ouagadougou and Bobo-Dioulasso, meanwhile the 

LST values increased. This could be explained by the fact that there is an expansion of 

built-up area towards the city’s outskirts and these surfaces are mixed with natural 

landscape having less heat capacity. Then, although considered as built-up areas in the 

classification given the pixel size, they have low LST values because the LST is the 

average skin temperature of the different LULC units at the pixel level (built-up fraction 

is low at the periphery of the city). This result is in line with that of Dissanayake et al. 

(2019) who found that impervious surfaces are key contributors to LST increase and its 

fraction declines from the city centre to the surrounding areas. On the contrary, non-built-
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up areas showed a negative correlation with LST during the study period. This result is 

in agreement with other studies which related LST and LULC using spectral indices such 

as NDVI and NDWI, and found a negative correlation (Guha et al., 2020; Imran et al., 

2021; Shi et al., 2021).  

In both study sites, the correlation strength between non-built-up rate and LST decreased 

as in the case of built-up areas. This situation could be explained by the influence of 

surrounding built-up surfaces on the non-built-up areas’ LST. Indeed, the non-built 

landscape mainly occupied by agricultural, forest and water bodies are affected by the 

neighbouring built-up areas which absorb and reemit huge amounts of heat in the 

atmosphere. This findings agree with that of Alavipanah et al. (2015) who noted that the 

LST within urban vegetation areas is influenced by LST in the surrounding built-up areas. 

In terms of cooling effect, the non-built-up classes’ contribution was significant during 

the study time span. The contribution to urban cooling of non-built-up areas was non-

linear in Bobo-Dioulasso, unlike Ouagadougou. Nevertheless, an increase in cooling was 

produced while the non-built-up cover rate within a pixel increased. This is in line with 

the studies of Di Leo et al. (2016) and Shi et al. (2021) which showed that non-built-up 

classes such as vegetation can attenuate the warming effects of built-up surfaces. In 

Germany, Alavipanah et al. (2015) also demonstrated that strong cooling effect was 

observed in areas with more vegetation coverage. 

These findings clearly show that built-up expansion is the main driver of LST increase in 

the study area. This is one more raison of the negative influence of urban sprawl on the 

environment. It can be used to promote LULC policy which integrates non-built-up 

surfaces development or restauration, particularly in the urban core where built-up 

proportions are the highest.  
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4.2.5. Correlation between LST and selected public diseases  

LST increase and its inherent SUHI deteriorate urban dwellers thermal comfort and create 

a suitable environment for temperature-related diseases prevalence. This research found 

that the peak occurrence of malaria and dengue corresponds to the dry season, 

immediately after the rainy season. In the urban area, malaria occurs at any time during 

the year, because of the persistence of SUHI, which keeps the surface warm enough to 

favour the development of the diseases-carrying vector. For example, the malaria vector 

can survive and evolve under temperatures between 20 to 25°C (Chastel, 2006). A similar 

situation is applicable to dengue that has a rapid development when the temperature is 

between 30 to 35°C. Despite the absence of established direct relationship between the 

temperature rise and diseases prevalence such as malaria and dengue, the increase of 

urbanisation trend associated with the intensification of extreme weather events such as 

drought and floods could increase these diseases in Africa and Asia (Githeko et al., 2000). 

As for meningitis, the positive correlation with LST indicates that when the LST 

increases, the number of reported cases also increase, particularly during the dry season 

(February, March, April, October). This is in line with the pattern of meningitis regarding 

air temperature, as shown by Chen et al. (2022). Considering that the LST influences the 

air temperature by contributing to its increase, LST could also contribute to intensify 

meningitis outbreak. The impact of LST on public health can be summarized as follow: 

the emission of heat after sunset creates a suitable ecological environment for the vectors 

of certain diseases to develop. For example, the malaria vector likes a warm environment 

because when the heat emitted by the surface heats the water spots, it creates a liveable 

environment for the vector. That situation leads to extension in the lifespan of the vector 

in the year, since the urban surface is getting much warmer and Greenhouse effect is 
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increasing. On the horizon 2050, LST values will continue to increase and then have a 

consequent influence on diseases prevalence in the study area. 

A limitation of this assessment of the correlation between LST and diseases is the use of 

district level aggregated data instead of patient based. Although that limitation, the 

findings show a strong correlation between LST and meningitis prevalence in Bobo-

Dioulasso. This result can serve as guide to the Ministry of Health to investigate in detail 

the link between LST and meningitis. 

 

4.3. Summary of Key Findings 

From the foregoing discussions, the following were observed: 

i. The dominant LULC class in Ouagadougou is built-up areas, indicating an 

expansion of residential areas. In Bobo-Dioulasso, conversely, agricultural areas 

were dominant, even if they experienced a non-steady trend during the study 

period. The intensity analysis showed that Ouagadougou experienced a fast 

annual change intensity between 2015 and 2021, whereas in Bobo-Dioulasso, a 

fast change in intensity was recorded during the period 2009 – 2015. The main 

transitions were towards built-up surfaces at the expense of agricultural and bare 

lands in both sites.  

ii. The future projection results showed that, under BAU scenario in both cities, the 

built-up areas will continue to expand towards the peripheral zones at the expense 

of agricultural and forest areas in 2050. 

iii. The comparative trend analysis of LST and air temperature showed an increasing 

trend of both variables in the two cities. The global increase is driven by the March 

– April – May season, which presented a significant increase in Ouagadougou. 

So, this season is suitable for LST trend analysis in the region. 
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iv. The relationship analysis carried out revealed a stronger positive correlation 

between the LST and ambient temperature in Bobo-Dioulasso than Ouagadougou. 

The study also found that the SUHI presented high intensities in the urban core in 

both cities with higher night-time values in Ouagadougou. This tendency will 

continue in the future if the current LULC changes trend under the BAU persists 

in the area. 

v. The correlation analysis between LULC changes and LST, revealed a positive 

correlation between LST and built-up areas, while non-built-up surfaces presented 

a negative correlation with LST in the study area. The non-built-up surfaces 

contribute to environmental cooling with a greater effect in Ouagadougou than 

Bobo-Dioulasso. 

vi. The assessment of the link between LST and diseases showed that Plasmodium 

falciparum malaria and dengue cases have a weak correlation with LST in both 

cities. However, meningitis exhibited a moderate to strong positive correlation 

with LST, particularly in Bobo-Dioulasso. The increase in LST lead to an increase 

in meningitis prevalence. Thus, an increase in meningitis cases is expected in the 

future as the current trend of LST continues in both cities. 
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CHAPTER FIVE 

5.0.  CONCLUSION AND RECOMMENDATIONS 

 

5.1. Conclusion 

The research combined remote sensing, GIS and statistical data and analyses techniques 

to investigate the impacts of urbanisation induced LST in Ouagadougou and Bobo-

Dioulasso, Burkina Faso. 

The results showed that LULC changes during the study period was characterized by an 

expansion of built-up area, bare land, forest and water body, against a reduction of 

agricultural lands in Ouagadougou. In Bobo-Dioulasso, the built-up area, agricultural 

lands and bare land increased, while forest and water body decreased. In Ouagadougou, 

the increase in built-up area (78.13 per cent and bare land combined with the reduction 

of agricultural lands (42.25 per cent) indicated the advanced state of imperviousness of 

the area. In Bobo-Dioulasso also, in addition to an increase in built-up area (140.7 per 

cent), the degradation of forested areas is evidence of human footprint expansion in the 

area. Under the BAU scenario, built-up areas will continue to expand and cover about 78 

per cent and 13 per cent of the landscape in 2050 respectively in Ouagadougou and Bobo-

Dioulasso. The intensity analysis showed that Ouagadougou experienced greater annual 

change intensity, which peaked in the 2015-2021 period with 3.61 per cent of landscape 

area change per year. In Bobo-Dioulasso the maximum change intensity was recorded in 

2009-2015 with 2.22 per cent of area change per year. The transition of changes was 

towards built-up surfaces, at the expense of bare and agricultural lands in both cities. 

The assessment of LST patterns indicated an increasing trend with a persistent heat island 

in Ouagadougou and Bobo-Dioulasso from 2003 to 2021. The seasonal analysis showed 

an increase of LST in the MAM and SON seasons, while the DJF and JJA seasons saw a 
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decrease in LST in both cities during the study period. The yearly LST increase during 

the period was driven by the MAM season, which showed a statistically significant trend 

in Ouagadougou against a non-significant trend in Bobo-Dioulasso. Strong UHI intensity 

was noted in the inner city, mainly during night-time in Ouagadougou. Meanwhile, the 

LST values were strongly correlated with the air temperature values throughout the study 

time span with a greater correlation coefficient in Bobo-Dioulasso (R=0.83) than 

Ouagadougou (R=0.76). Concretely, LST and air temperature increased in the area, while 

LST contributed positively to the air temperature trend.  

The relationship between the LULC change and LST in the two cities, at pixel scale, 

showed a moderate to high positive correlation with built-up proportion, while the non-

built-up class rate was negatively correlated. The difference in LST between a fully built-

up pixel and a fully non-built-up pixel varied between 1.47°C and 1.87°C in 

Ouagadougou against 1.02°C and 1.27°C in Bobo-Dioulasso. This difference in values 

experienced gradual decreases from 2003 to 2021 in both cities, showing that LST in all 

LULC classes increased. In terms of cooling effects, the non-built classes contribution 

varied according to the sites during the four years (2003, 2009, 2015 and 2021). It was 

lower in Bobo-Dioulasso (0.29 - 1.39°C) than in Ouagadougou (0.74 - 1.94°C). The 

highest contribution of non-built class to cooling was recorded in 2009 in Ouagadougou 

and in 2003 in Bobo-Dioulasso.  

The analysis of the correlation between Plasmodium falciparum malaria, dengue and 

meningitis cases and LST showed strong to negligible correlation according to the 

disease. Plasmodium falciparum malaria and dengue had a weak to negligible correlation 

with LST in the two cities. For meningitis, the correlation was moderate in the districts 

of Dafra and Konsa (Bobo-Dioulasso) and Sig-Noghin (Ouagadougou). Only the district 
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of Do in Bobo-Dioulasso presented a strong correlation with the LST. With LST predicted 

to continue increasing into the future, the prevalence of these diseases (especially 

meningitis) may increase. 

 

5.2. Recommendations  

Based on the findings of the study, the following recommendations are suggested. They 

are made for policy improvement, performance improvement, and for further research. 

The LULC changes were dominated by built-up gain at the expense of naturally 

undisturbed areas, with higher change intensity in Ouagadougou than Bobo-Dioulasso. 

The same tendency of change will continue in 2027 and 2050 if the current situation 

persists under the business-as-usual scenario. This LULC change profile causes the 

multiplication of water resistant and high solar radiation absorbers materials in the area, 

leading to an increase in LST. The LULC maps produced for Ouagadougou and Bobo-

Dioulasso should serve as decision making tools that would inform the urban planners in 

both cities of the rate at which land conversion into built-up surfaces occur. Consequently, 

the Ministry in charge of Urban Planning can use these findings to improve the housing 

policy in Burkina Faso. Rather than allowing individual housing, which contribute to 

urban sprawl, LST increase and are not affordable for low-income people, the Ministry 

can promote and implement collective low-income green housing developments. This 

policy will allow more people to afford houses and will contribute to mitigate urban 

sprawl and LST.  

The SUHI exhibited strong intensity values in the urban core, from 1 to 6 km and 1 to 3 

km from the centre respectively in Ouagadougou and Bobo-Dioulasso. The difference in 

LST between a pixel fully covered by built-up and a pixel covered by non-built-up area 

decreased, indicating an increase in all LULC classes. In addition, LST increase lead to 
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air temperature increase in the two cities. These findings can inform the Ministry in 

charge of Urban Planning to integrate non-urban landscape development in real estate 

project implementations to mitigate LST. The Ministry of Environment should ensure 

that real estates development agencies incorporate green areas such as street trees and 

house trees to increase non-built-up surfaces cover in urban settings. Moreover, 

afforestation activities should be conducted in urban areas, instead of rural areas only, 

mainly along tarred road to cut off solar radiation with the hope of reducing the current 

and future LST in the two cities. These green activities will contribute to reduce the rate 

of built-up coverage per surface unit for LST and consequently air temperature 

mitigation, towards achieving sustainable cities. 

Further research should be conducted on urban LST trend using longer historical datasets 

to be able to relate it to climate change. Future investigation could assess the long-term 

correlation between LST and air temperature for LST-air temperature complementation 

modelling. This study also suggests the use of detailed datasets on public diseases, in 

particular meningitis (data on each patient location) for a modelling of population 

vulnerability to LST. 
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5.3. Contribution to Knowledge 

The study revealed that Ouagadougou experienced more rapid changes in LULC than 

Bobo-Dioulasso, with a maximum annual change intensity of 3.61 percent recorded 

between 2015 and 2021 as against 2.22 per cent in Bobo-Dioulasso for the period 2009 – 

2015. The transition of changes was towards built-up areas, which gains targeted bare 

land and agricultural lands in both cities. This situation has led to the increase of built-up 

surface in Ouagadougou by 78.12 per cent, while 42.24 per cent of the agricultural land 

area was lost. However, in Bobo-Dioulasso, the built-up area has increased far more by 

140.67 percent and the agricultural land areas experienced a gain of 1.38 per cent 

compared with the 2003 baseline.  

Both cities experienced an increasing trend in LST and air temperature (z value >0) with 

a greater increase in Ouagadougou than Bobo-Dioulasso, due to urbanisation. The global 

yearly trend was supported by the March-April-May (MAM) season, which shows a 

statistically significant trend in Ouagadougou (p-value=0.009). The LST and air 

temperature exhibited a stronger correlation in Bobo-Dioulasso (R=0.83) than in 

Ouagadougou (R=0.76). In the study area, at the pixel level, the built-up proportion 

showed a moderate positive correlation with the LST (0.44≤R≤0.64 in Ouagadougou, 

0.49≤R≤0.61 in Bobo-Dioulasso), while the non-built-up proportion was negatively 

correlated with LST (-0.41≤R≤-0.6 in Ouagadougou, -0.49≤R≤-0.59).  

The difference in LST between a fully built-up pixel and a fully non-built-up pixel 

decreased from 2003 to 2021 in both cities indicating that the LST increased in all LULC 

types throughout the study period. The contribution of the non-built-up class to urban 

cooling was lower in Bobo-Dioulasso (between 0.29°C and 1.39°C) than in Ouagadougou 

(between 0.74°C and 1.94°C). The research also found that malaria and dengue fever had 
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a weak correlation with LST (R<0.4), while meningitis presented a moderate correlation 

in the districts of Dafra (R=0.56) and Konsa (R=0.49) in Bobo-Dioulasso) and Sig-

Noghin (0.66) in Ouagadougou. Only the district of Do in Bobo-Dioulasso showed a 

strong correlation (R=0.86) with the LST. With projected increases in LST under the 

business-as-usual scenario, the prevalence of temperature-related diseases may increase. 

In summary, the study area experienced an increase in human footprint, which contributed 

to the intensification the LST which is an environmental threat to urban dwellers. These 

findings constitute a useful decision support for sustainable urban planning. It is therefore 

recommended that afforestation should be vigorously pursued at all governmental levels 

to step down the LST in the two cities. While sponsored research should be carried out to 

deepen the knowledge on LST and epidemic in the nation. 
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APPENDICES 

 

APPENDIX A: LULC intensity analysis / Category level metrics in Ouagadougou 

 
Gross 

Loss 
Gross Gain 

Loss 

Intensity 

Gain 

Intensity 

Uniform 

Category 

Intensity 

Loss 

Behaviour 

Gain 

Behaviour 

Category level Intensity Analysis for interval:  2003 - 2009 

Built-up 9813.667 15551.833 0.028 0.040 0.026 Active Active 

Agricultural land 17324.333 9087.667 0.025 0.014 0.026 Dormant Dormant 

Forest 672.833 413.333 0.077 0.058 0.026 Active Active 

Bare land 383.333 2761.000 0.091 0.149 0.026 Active Active 

Water 363.667 744.000 0.056 0.085 0.026 Active Active 

Category level Intensity Analysis for interval:  2009 - 2015 

Built-up 4960.500 24568.667 0.013 0.049 0.030 Dormant Active 

Agricultural land 24489.333 5217.833 0.037 0.010 0.030 Active Dormant 

Forest 322.167 1319.333 0.045 0.100 0.030 Active Active 

Bare land 2182.333 858.000 0.118 0.081 0.030 Active Active 

Water 473.167 463.667 0.054 0.053 0.030 Active Active 

Category level Intensity Analysis for interval:  2015 - 2021 

Built-up 7627.833 28252.833 0.015 0.045 0.036 Dormant Active 

Agricultural land 28586.000 6423.833 0.053 0.016 0.036 Active Dormant 

Forest 1092.000 1162.167 0.083 0.086 0.036 Active Active 

Bare land 1156.167 2963.333 0.110 0.139 0.036 Active Active 

Water 421.833 81.667 0.049 0.012 0.036 Active Dormant 
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APPENDIX B: LULC intensity analysis / Category level metrics in Bobo-Dioulasso 

 Gross Loss 
Gross 

Gain 

Loss 

Intensity 

Gain 

Intensity 

Uniform 

Category 

Intensity 

Loss 

Behaviour 

Gain 

Behaviour 

Category level Intensity Analysis for interval:  2003 - 2009 

Built-up 1019.667 4618.000 0.013 0.045 0.022 Dormant Active 

Agricultural land 20813.333 21650.000 0.013 0.014 0.022 Dormant Dormant 

Forest 20545.000 16155.667 0.067 0.057 0.022 Active Active 

Bare land 252.167 206.000 0.117 0.110 0.022 Active Active 

Water 0.000 0.500 0.000 0.000 0.022 Dormant Dormant 

Category level Intensity Analysis for interval:  2009 - 2015 

Built-up 1470.333 5340.167 0.014 0.042 0.022 Dormant Active 

Agricultural land 13042.500 29981.333 0.008 0.018 0.022 Dormant Dormant 

Forest 27153.000 8278.000 0.097 0.049 0.022 Active Active 

Bare land 204.333 118.500 0.109 0.087 0.022 Active Active 

Water 1939.833 92.000 0.158 0.080 0.022 Active Active 

Category level Intensity Analysis for interval:  2015 - 2021 

Built-up 930.500 12441.167 0.007 0.064 0.022 Dormant Active 

Agricultural land 28049.500 13891.000 0.017 0.009 0.022 Dormant Dormant 

Forest 13000.833 15238.167 0.077 0.084 0.022 Active Active 

Bare land 25.667 436.167 0.019 0.114 0.022 Dormant Active 

Water 0.000 0.000 0.000 0.000 0.022 Dormant Dormant 

 


