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ABSTRACT 

In the face of rapid urbanisation, understanding the intrinsic characteristics of urban landscapes is 

pertinent for maintaining ecosystem well-being and implementing proactive measures against 

uncontrolled landscape transformation and climate change. Consequently, this study assessed the 

changes in urban landscape structure and their impact on ecosystem regulating services (ERS) in 

the Rainforest (Akure and Owerri) and Guinea savanna (Markurdi and Minna) ecoregions of 

Nigeria between 1986-2022. It analysed the spatial and temporal patterns of landscape 

fragmentation and aggregation, model ERS distribution, identify drivers of ERS, and predict future 

effects of landscape changes on ERS sustainability. The study integrated machine-learning-based 

geospatial techniques, ecological metrics, biophysical models and socioeconomic techniques. 

Supervised classification using the random forest (RF) machine-learning classifier was performed 

on Landsat images in the Google Earth Engine (GEE) environment to assess the land use and land 

cover (LULC) patterns. The LULC layers were deployed into FRAGSTAT to evaluate the degree 

of landscape fragmentation (patch density, PD and edge density, ED) and landscape aggregation 

(aggregation index, AI). LULC, biophysical, and meteorological datasets were incorporated into 

the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) platform to model the 

spatiotemporal pattern of ERS including carbon storage and sequestration, heat mitigation (HMI) 

and stormwater retention. A household survey, involving the administration of a semi-structured 

questionnaire to 1552 participants, was conducted to investigate the nature and drivers of the 

changing urban landscape and ecosystem services based on the perspective of urban inhabitants. 

The future LULC pattern was simulated using the Cellular Automata–Artificial Neural Network 

(CA-ANN) model for 2042. Accuracy validation and assessment for all reported models showed 

results exceeding 70%. The highest rate of built-up area expansion was observed in Makurdi 

(0.74% year-1), followed by Akure (0.42% year-1), Owerri (0.35% year-1), and Minna (0.32% year-

1). Landscape fragmentation (ED) showed an increasing trend for built-up class (from 6.41 m/ha 

to 44.80 m/ha) in cities but with fluctuations for Makurdi and Minna. AI for the built-up class 

slightly decreased in Akure and Owerri while Makurdi and Minna underwent an increment, 

showing increasing densification of the built-up landscape in these cities. Residential expansion, 

agricultural practices, transport and infrastructural development, and fuelwood production were 

recognised as the principal drivers of landscape changes, especially within a 5 km–10 km radius 

of the urban core, resulting in an 8.60%–33.83% decline in carbon storage and a 5%–13% decline 

in HMI across cities. This corroborated the perception of over 54% of the respondents who noted 

a considerable decline in landscape ecological health. Climate variability/change reportedly 

contributes to 28.5%–34.4% (Negelkerke R2) of the changing status of landscapes in Akure and 

Makurdi, as indicated by multinomial logistic regression modelling, while population growth/in-

migration and economic activities account for 19.9%–36.3% in Owerri and Minna. Moreover, 

future LULC prediction between 2022 and 2042 suggested that built-up areas might expand by 

6.63% (Akure), 5.99% (Owerri), 1.01% (Makurdi), and 1.20% (Minna) with the Rainforest cities 

showing a higher tendency for more rapid urban growth, landscape fragmentation and decline in 

ERS. It was concluded that variations in developmental processes and activities have considerable 

impacts on altering landscape characteristics and ERS than ecological settings. Urban residents 

should be integrated into management policies geared towards formulating and enforcing urban 

planning regulations, promoting urban afforestation, and establishing sustainable waste 

management systems. Also, there is a need to embrace the proposed city-specific ecological 

management alongside informed urban and regional landscape conservation and planning. 
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CHAPTER ONE 

1.0         INTRODUCTION 

1.1 Background to the Study 

Advancement in human civilisation is often accompanied by changes in the spatial structure of 

landscapes (Badora and Wrobel, 2020; Obateru et al., 2025). These changes include natural 

ecosystem perturbation and attendant habitat fragmentation through urban development and 

agricultural expansion (Mitchell, 2013; Badora and Wrobel, 2020; Asante-Yeboah et al., 2024). 

Changes in landscape structure on a given spatial and temporal scale are demonstrated as changes 

in the type, dimension, and spatial distribution of different land use and land cover types (Lavorel 

et al., 2020). Landscape structure and ecosystem spatial configuration are impacted by these 

changes, causing changes in matter, energy, and ecological fluxes and, in due course, the delivery 

and preservation of ecosystem services (Lavorel et al., 2020; Obateru et al., 2025). 

Landscape structure relates to the spatial pattern of landscape elements and the connectivity 

between the diverse ecosystems and landscape components (McGarigal et al., 2018). Landscape 

structure is comprised of three components, namely, landscape composition, configuration, and 

connectivity (Forman and Godron, 1986; Mitchell, 2013). The types and dimensions of various 

land use and land cover that exist in a landscape are referred to as their composition, while the 

configuration is the spatial arrangement of those land use and land cover types (Francis and Antrop, 

2021). Landscape connectivity relates to the level to which the mobility of organisms and materials 

is enhanced by the landscape; however, the degree of compaction of various landscape components 

is termed aggregation (Francis and Antrop, 2021).  
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The supply and worth of ecosystem services (ES), closely connected to human needs, is 

considerably influenced by landscape characteristics and prevailing anthropogenic activities 

(Biratu et al., 2022; Obateru et al., 2024). Thus, ES are the gains humans obtain from ecosystems 

(Mengist et al., 2020). The Millennium Ecosystem Assessment characterised these gains into four 

categories – “provisioning services (food, water, fuel and wood or fibre), regulating services 

(climate, flood and disease regulation and water purification), supporting services (soil formation, 

nutrient cycling and primary production), and cultural services (educational, recreational, aesthetic 

and spiritual)” (MA, 2005; van der Geest et al., 2019). These services cannot be considered static 

phenomena and homogeneous across landscapes (Fisher et al., 2009), and are often supplied within 

process-related landscapes such as catchments (Pretty et al., 2003), specific environments, or 

regions (Haase and Mannsfeld, 2002; Syrbe and Walz, 2012). It is worth emphasising that land 

use changes especially due to the inevitability of urban development have led to trade-offs between 

and among ES (Mengist et al., 2020; Asante-Yeboah et al., 2024). For instance, the transformation 

of natural forest or grassland landscape to urban landscape may have adverse effects on the 

diversity of flora and fauna as well as water quality and quantity. This is due to land clearing and 

increased sediment yield, habitat fragmentation and decline in the diversity of species responsible 

for nutrient cycling, construction and developmental activities as well as alteration of the 

behaviour of water balance components (Ntshane and Gambiza, 2016). 

Over the past five decades, human actions have rapidly and extensively transformed the structure 

and functionality of global ecosystems more than in any comparable human historic period, 

principally to satisfy the fast-growing demands for fresh water, food, fibre, timber, and fuel. The 

global urban population grew from about 200 million in 1990 to 2.9 billion in 2000 while the 

number of urban settlements with a population over one million increased from 17 in 1900 to 388 
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in 2000 (MA, 2005). Approximately one-quarter (24%) of the earth’s natural landscape has been 

transformed into cultivated lands since the second half of the 20th century due to the intensification 

of human actions (MA, 2005). Broadly, the MA (2005) report pointed out that about 60% of the 

ecosystem services evaluated during the Millennium Ecosystem Assessment (including fresh 

water, capture fisheries, pests, water and air purification, local and regional climate regulation, and 

natural hazards) is undergoing degradation or unsustainable utilisation. The report further 

indicated that more land was transformed into cultivated systems such as croplands, shifting 

cultivation, freshwater aquaculture, or confined livestock production, in the period between 1950 

and 1980 than in the 150 years between 1700 and 1850. In addition, there has been a 32% increase 

in the atmospheric concentration of carbon dioxide since 1750 (from about 280 to 376 parts per 

million in 2003), mainly as a result of increased fossil fuel combustion and land use and land cover 

changes (MA, 2005). 

Assessing the connection between urban landscape structure and the quality of ES is useful in 

depicting the dynamic interaction between landscape elements and ecological processes. It also 

offers a systematic basis for landscape management and ecosystem protection (Chen et al., 2021). 

This interaction can be studied on different spatial scales including grid (Su et al., 2012), catchment 

(Yushanjiang et al., 2018), and administrative region levels (Taubenböck et al., 2009). ES establish 

the connection between the ecosystem and the sociocultural system (Badora and Wrobel, 2020). 

For example, Liu et al. (2020) conducted a quantitative analysis of the spatial variation in 

landscape patterns in the Middle Reaches of the Yangtze River Urban Agglomerations, China, in 

relation to the spatial distribution of ecosystem service values for 2015, using the modified benefit 

transfer method. The study found that landscape patterns significantly impact ecosystem services, 

with notable spatial spillover effects. Additionally, it suggested that cross-regional collaborative 
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governance could serve as an effective approach to landscape planning. Similarly, Lamy et al. 

(2016) assessed the influence of landscape composition and configuration on the provision of 

ecosystem service bundles across 130 municipal areas in an agricultural region of Southern 

Québec, Canada. Their research demonstrated that both LULC composition and configuration are 

critical in explaining substantial variation in ecosystem service provision within a landscape 

transitioning from forest to agriculture. The study revealed that “landscape structure explains 66%, 

41%, and 32% of the variation in carbon sequestration, deer hunting, and soil organic matter 

respectively, but only 5%, 4%, and 3% of the variation in water quality, tourism, and summer 

home value” (Lamy et al., 2016). Furthermore, a specific ecosystem service bundle was linked to 

a distinct zone in the landscape, representing the gradient between forest and agricultural land. 

Over the years, the impact of changing urban landscape structure on ecosystem services in the light 

of climate change has received little attention. Only a handful of studies (Seppelt et al., 2012; 

Ntshane and Gambiza, 2016; Inkoom et al., 2018). A few studies (Seppelt et al., 2012; Ntshane 

and Gambiza, 2016; Inkoom et al., 2018) have explored the interaction between landscape 

structure, associated ecosystem services, and climate change. For example, Inkoom et al. (2018) 

examined the capacity of agricultural landscapes to provide ecosystem regulating services and 

enhance land system resilience to climate change in the Vea catchment, Upper East Region of 

Ghana, using landscape metrics, geographic information systems, remote sensing, and expert 

weighting approaches. Their findings indicated that highly heterogeneous landscapes have a 

greater capacity to provide pest and disease control, while less heterogeneous landscapes are better 

suited for delivering climate regulation services. Additionally, the study suggested that aligning 

adapted land use with optimised land use patterns could considerably mitigate the effects of 

climate change in agricultural landscapes across West Africa. 
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In other parts of West Africa including Nigeria, researchers have placed more emphasis on 

landscape dynamics, especially LULC changes, and the associated environmental changes. 

Instances of such studies include Sinare and Gordon (2015) (Sudano-Sahelian zone of West 

Africa); Tiando et al. (2021) (Benin Republic); Gnansounou et al. (2022) (Togo-Benin Republic). 

In Nigeria, examples of such studies include Akinyemi (2013), Awoniran et al. (2014), Arowolo 

et al. (2018), Adenle et al. (2020b), and Arowolo et al. (2020).  

Specifically in Nigeria, Adenle et al. (2020a), examined the state of land degradation and 

impoverishment pattern between 2003 and 2018 in the Guinea savanna belt to provide baseline 

information for monitoring future changes in LULC characteristics. Akinyemi (2013) examined 

the fostering factors of LULC changes in the cocoa belt of southwestern Nigeria between 1986 

and 2011. The study identified cultivation as the main driver of forest degradation. Awoniran et 

al. (2014) investigated the pattern of LULC changes in the Lower Ogun River basin in 

southwestern Nigeria between 1984 and 2012 and reported that urban farming on wetlands 

encourages severe soil degradation and biodiversity loss. 

Given the rapid pace of urban development, which outpaces the growth of economic and 

infrastructure advancements, urban areas are highly vulnerable to climate extremes and 

environmental hazards such as flooding, droughts, rising sea levels, heat waves, and erosion 

(Cavan et al., 2014). Therefore, it is essential to understand how ecological variation, urban 

disparity, and differing land management practices influence the performance of ecosystem 

regulating services in cities in the context of climate change. In light of this, the present study 

aimed to evaluate shifts in urban landscape structure and their effects on ecosystem regulating 

services under changing climate conditions in the Rainforest and Guinea savanna ecological 

regions of Nigeria. 
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1.2 Statement of the Research Problem 

Globally, ecosystem services are estimated to provide benefits valued between 125–140 trillion 

USD annually (OECD, 2019). Urban landscapes are highly complex and heterogeneous, defined 

by multiple spatial boundaries between various land use and land cover types. These landscape 

patches, whether individually or collectively, offer a range of ecosystem services, including air 

quality regulation, micro-climate control, noise and disturbance reduction, water quality and 

quantity regulation, waste treatment, and cultural, recreational, and educational benefits (La Rosa 

et al., 2016). This highlights the importance of identifying effective strategies to assess risks and 

opportunities related to landscapes and their associated ecosystems, particularly at the local scale 

(Cerreta et al., 2020). Moreover, the European Union Biodiversity Strategy for 2030 has stressed 

the urgency of reversing ecosystem degradation to build resilience in urban areas and enhance the 

adaptability of urban centres to future crises. Consequently, a comprehensive understanding of 

urban landscape structure and ecosystem services, including their biophysical, economic, and 

socio-cultural aspects, is crucial for effective monitoring and sustainability of urban environments. 

The landscape of Nigeria continues to transform under the combined impacts of human activities 

and climate change, leaving it vulnerable to ecosystem degradation and impairment across various 

spatial scales. In recent times, Nigeria has remained one of the top countries on the global 

degradation threat list (FAO, 2010), with a degraded land area exceeding Ghana’s landmass 

(CILSS, 2016). About 55.7% of Nigeria’s primary forest vanished between 2000 and 2005 (FAO, 

2010). The tropical Rainforest and Guinea savanna have been categorised as the most threatened 

ecological zones in Nigeria (CILSS, 2016), and are drastically relinquishing their ethnobotanical 

glory due to the expansion of rural settlements, the spread of urban landscapes and population 

growth, logging, grazing and developmental activities (Borisade et al., 2021). 
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In Nigeria, there is a paucity of research on spatiotemporal changes in ecosystem regulating 

services. Attention has been focused on the impact of LULC changes on ecological conditions 

such as NDVI and land surface temperature (Olorunfemi et al., 2020a; Fashae et al., 2020; 

Alademomi et al., 2022) while previous studies on carbon stock were conducted in protected areas 

(Komolafe et al., 2020) or at a coarse spatial resolution (Akpa et al., 2016; Ibeabuchi, 2023). 

Efforts to investigate ecosystem regulating services in Nigeria are limited to the work of Arowolo 

et al. (2018) who examined the impact of LULC changes on ecosystem services across the sub-

national entities of Nigeria using the value transfer method between 2000 and 2010. Results 

highlighted an 11.01% and 4.3% reduction in water and climate regulating services, respectively. 

However, the regulating functions of urban ecosystems are of key importance for overcoming the 

challenges of climate extremes. Regulation ecosystem services embrace advantages derived from 

the moderation of ecological processes, encompassing those of carbon, climate, water, and human 

morbidity (MA, 2005).  

Despite the relevance of these non-marketed services, regulating services continue to be degraded 

due to their intangible nature and unplanned development (MA, 2005; Busch et al., 2012; Cavan 

et al., 2014). In addition, although, landscape structural diversity has a functional role in building 

landscape and ecosystem resilience to external forces such as climate change, the nuances of such 

diversity have not received much attention in the literature (Inkoom et al., 2018). Given the 

aforementioned, the nature of the interrelationship between the changing pattern of urban 

landscape structure and ecosystem regulating services in the face of climate change has not 

received sufficient attention despite its pivotal role in achieving the 2030 Sustainable Development 

Goal 11 (sustainable cities and communities), Goal 13 (mitigation of climate change) and Goal 15 

(protection, restoration and sustainable use of ecosystems). Specific targets under the framework 
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of these goals include palliating the adverse per capita environmental impact of cities (Goal 11), 

integrating climate change measures into urban development (Goal 13), and reducing urbanisation 

as well as conserving and restoring terrestrial ecosystems (Goal 15).  

1.3 Research Questions 

The main issues addressed by this study are:  

1. What is the nature and trend of the changing urban landscape structure in cities of the 

Rainforest and Guinea savanna ecoregions? 

2. What are the different potentials of urban landscapes in delivering ecosystem regulating 

services in cities of the ecoregions? 

3. What are the characteristics and drivers of the changes in urban landscape and ecosystem 

regulating services in cities of the ecoregions? 

4. What is the pattern and trend of climatic changes in the cities of the two ecoregions? 

5. How will changes in landscape structural diversity influence ecosystem resilience to 

climate change? 

1.4 Aim and Objectives of the Study 

This study aimed to assess the changes in urban landscape structure and their impacts on ecosystem 

regulating services in the Rainforest and Guinea savanna ecological regions of Nigeria. The 

objectives of the study include, to: 

i. assess the spatial and temporal changes in landscape structure (landscape composition, 

configuration and connectivity) in cities of the Rainforest and Guinea savanna ecoregions 

between 1986 and 2022; 
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ii. model the spatiotemporal distribution of ecosystem regulating services in relation to 

landscape changes in cities of the ecoregions between 2002 and 2022; 

iii. investigate the characteristics and drivers of the changes in landscape and ecosystem 

regulating services in cities of the ecoregions; 

iv. assess the trend and pattern of climatic (precipitation and temperature) changes in cities of 

the ecoregions between 1981 and 2022; and 

v. analyse the impact of future landscape changes on the resilience and sustainability of 

ecosystem regulating services across cities in both ecoregions and propose city-specific 

strategies for ecological management and urban landscape conservation. 

1.5 Research Hypotheses 

1. Ho: Landscape structural characteristics do not vary significantly within and between 

ecoregions. 

2. Ho: There is no significant variation in the perceived status of ecosystem regulating services 

within and between ecoregions. 

3. Ho: There is no significant relationship between household socioeconomic characteristics 

and urban resident’s environmental concern for landscape changes. 

4. Ho: There is no significant trend in the temporal pattern of climatic variables within and 

between the ecoregions. 

5. Ho: There is no significant correlation between urban landscape structure and ecosystem 

services. 
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1.6 Justification for the Study 

Rapid global environmental change is compelling human societies to seek and utilise valuable 

opportunities to sustain their livelihoods and maintain good living standards (Lavorel et al., 2020). 

Ecosystems provide tangible and intangible benefits as landscape characteristics and structure 

transform (Biratu et al., 2022). Understanding the effects of landscape dynamics on ecosystem 

services is relevant for developing systematic and technical solutions for the sustainable 

advancement of socioeconomic and ecological systems. This study allows the recognition of the 

dominant processes and drivers of urban LULC dynamics. The outcome of the landscape structure 

assessment is a relevant tool for policy improvement and decision-making and contribute to 

adopting and implementing appropriate urban land use policy while taking into account the effects 

of future climate change.  

Specifically, a fine-scale critical appraisal of the interaction between urban landscape structure 

dynamics and ecosystem regulating services as executed in this study is of value to urban planners, 

conservationists, and environmental managers who are charged with the roles of providing an 

ecologically friendly and aesthetically pleasing ecosphere for urban inhabitants and meeting 

Sustainable Development Goal (SDG) targets that emphasise the reduction of the adverse per 

capita environmental impact of cities (Goal 11), the inclusion of climate change measures into 

urban development (Goal 13), and the reduction of urban expansion as well as the conservation 

and restoration of terrestrial ecosystems (Goal 15).  

In addition, this study offers a baseline resource that can assist in the performance of the extant 

policy of Nigeria’s Federal Ministry of Lands, Housing and Urban Development as well as the 

National Environmental Standards and Regulations Enforcement Agency (NESREA) on the 

promotion of a dynamic system of urban settlement while improving sustainable economic growth. 
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This baseline resource is also useful for anticipating future land use patterns, ecosystem 

impairment, and probable pathways for attaining additional sustainable and effective land 

management in the face of climate change.  

Moreover, this study introduced an improved methodology that demonstrates the effectiveness of 

integrating machine learning with geospatial techniques while monitoring urban ecosystem 

changes. It advances the frontier of knowledge by strengthening the nexus between the field of 

landscape ecology and the science of climate change through modelling the dynamic interaction 

among urban landscape structure, ecosystem services and climate change across ecological 

regions. This aspect has not received significant attention in the literature. 

1.7 Description of the Study Area 

1.7.1 Location 

The study locations are Akure and Owerri in the Rainforest ecological region, and Makurdi and 

Minna in the Guinea savanna ecological region (Figure 1.1). Akure, the capital city of Ondo State 

in southwestern Nigeria, has an area of approximately 1252.05 km2 and comprises three local 

government areas (LGAs): Akure North, Akure South, and Ifedore. Owerri, the capital city of Imo 

State in southeastern Nigeria, occupies approximately 537.36 km2. It comprises the Owerri 

Municipal, Owerri North, and Owerri West LGAs. Makurdi, approximately 841 km2 in extent, is 

the capital city of Benue State in northcentral Nigeria and comprises only Makurdi LGA. Minna, 

the capital city of Niger State in northcentral Nigeria, has an area of approximately 1661.04 km2 

and comprises Bosso and Chanchaga LGAs. 
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Figure 1.1 The Study Locations; RF = Rainforest; GS = Guinea savanna (Obateru et al., 2024)
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1.7.2 Climate 

The Rainforest ecoregion has a tropical humid climate (Köppen classification Aw), which is 

influenced by a dry continental air mass in the dry season and a moist tropical maritime airmass in 

the wet season. The wet season usually spans approximately eight months, from March to October. 

The dry season occurs from November to February; this period is dominated by the dry, dusty 

conditions of Harmattan brought by tropical continental or northeast trade winds. Occasional 

heavy rainfall events may be experienced in January and February from east–west squalls. The 

Rainforest receives a total rainfall of at least 1650 mm yr-1 with the peak commonly experienced 

in July and September. The average minimum annual temperature ranges between 14°C and 21°C, 

whereas the average maximum annual ranges between 28°C and 34oC. The Rainforest has 

abundant sunshine and high daytime temperatures, particularly in March and April, with relative 

humidity over 80% all year round (Obateru et al., 2023a; Faniran et al., 2023).  

The Guinea savanna ecoregion has a tropical savanna climate (Köppen classification Af) 

influenced by a dry continental air mass in the dry season and a moist tropical maritime air mass 

in the wet season. April to October is the rainy season with southwesterly maritime air dominant. 

November-March is dry, with northeasterly Harmattan being dominant (Obateru et al., 2023b). 

The Harmattan, dominant for approximately 3–4 months in this region, usually begins in 

November and is associated with cold dry winds and dust storms. The Guinea savanna receives a 

total rainfall of approximately 1000 mm yr-1 with a maximum occurring in August and September. 

It is considerably hotter than the Rainforest because of its higher latitude; the average minimum 

temperature ranges between 12°C and 23oC, while the average maximum temperature ranges 

between 30°C and 38oC. The relative humidity during the wet season is approximately 40%–60% 

(Faniran et al., 2023). 
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1.7.3 Ecological and vegetation belts 

In general, according to Keay (1959), the distribution of ecological regions of Nigeria is in a north-

south gradient, including Mangrove Swamp and Coastal Vegetation, Freshwater Swamp Forest, 

Rainforest, Derived Savanna, Guinea Savanna, Sudan Savanna, and Sahel Savanna (Figure 1.2). 

Additionally, there are a few mountainous areas located in the Jos Plateau, Adamawa, Taraba, and 

the northern part of Cross River State (FREL, 2019). 

Akure and Owerri are located within the Rainforest ecoregion of Nigeria. This ecoregion is 

positioned between the freshwater swamp forest to the south and the derived savanna to the north. 

It is characterised by dense, tall evergreen trees with substantial undergrowth, arranged in three 

distinct layers: the top layer, consisting of trees over 30 metres in height; the middle layer, with 

trees ranging from 18 to 24 metres, featuring sturdy branches and thick dark green foliage; and the 

ground layer, composed of herbs, shrubs, and grasses growing between 3 to 6 metres tall. The top 

storey consists of emergent species which may be either evergreens like Lophira alata and 

Tarrietia utilis, or deciduous such as Chlorophora excelsa (milicia) and Triplochiton sclereoxylon. 

The trees of the upper canopy are floristically heterogeneous and tower above a sea of densely 

packed vegetation; they are anchored to the ground by buttress roots. Other top storey species 

include Ceiba pentandia, Cynometra ananta, Erythrophleum ivorense, Lophira alata, Tarrietia 

utilis, and Terminalia superba. Ground story species include Diospyris sp., (Ebenaceae) e.g., D. 

mespiliformis caloncoba spp. (FREL, 2019). Timber species in the Rainforest of Akure are 

Mahogany, Obeche, Iroko, Afara, among others. The incessant removal of vegetation and 

continuous anthropogenic interference in and around the cities, particularly Akure, is degrading 

the Rainforest into a derived savanna (Fadairo, 2008). 
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Makurdi and Minna are located in the Guinea savanna, the largest ecological region in Nigeria, 

covering nearly half of the country. This zone lies between the lowland Rainforest to the south and 

the Sudan savanna to the north. Known as the savanna woodland or wooded savanna, the Guinea 

savanna is characterised by a mixture of tall grasses (1–3 metres in height) in open spaces and 

scattered trees (up to 15 metres high), creating a park-like appearance. This unique landscape is 

often referred to as parkland savanna, a result of decades of tree destruction due to human activity 

and bush fires. The vegetation here has adapted to the relatively dry climate, with species evolving 

features such as deep taproots, thick bark, and small leaves to survive the long dry season and 

endure bush fires. Some trees have umbrella-shaped canopies that not only reduce soil moisture 

loss by shading the ground but also present minimal resistance to the wind. 

The plant species found in the Guinea savanna resemble those of the Miombo woodlands in East 

Africa. Key species include Isoberlinia doka, Isoberlinia dalzielli, Monotes kerstingii, and Uapaca 

togoensis. The open canopy is characterised by grasses, shrubs such as Gardenia spp. and Protea 

elliottii, as well as woody climbers like Opilia celtidifolia and Uvaria chamae (Chiromo et al., 

2016; Obateru, 2021). 
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Figure 1.2 Ecological Regions of Nigeria (FREL, 2019) 

1.7.4 Topography and drainage 

Akure is situated within the Yoruba Hills and the Kukuruku forming a part of the Western 

highlands. It has a low-lying terrain ranging between 217 – 666 m in height above sea level (Figure 

1.1) and gently rolling topography with occasional hills rising to about 1500 m, especially towards 

the north (Olabode, 2015). Other locations are characterised by an average slope of less than 3o 

and they are composed of floodplains, interfluves and broad open valleys. Major rivers draining 

Akure include Rivers Omi Ebo, Aledi-Moponyin, Ala, Ijala and Ukere (Fadairo, 2008). Owerri, 

with elevation range of 30 m–144 m, is situated on the Eastern Scarplands of Nigeria. The 

topographical setting is characterised by highly undulating ridges and nearly flat or low-lying 

terrain. It is drained by rivers Nworie, Otamiri, Oramiriukwa and Njaba. Makurdi has an elevation 
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of 45m–204 m, is located on the bank of River Benue in the Niger-Benue Trough, a bow-shaped 

landform system. The surface has been severely dissected by erosion into tabular hills that are 

interspersed with gorge-like river valleys. Minna is situated in the southwestern section of the 

North-Central Highlands. It has an undulating terrain that slopes gently towards the south 

(Vulegbo et al., 2014); the elevation ranges between 80 – 500 m above sea level (Figure 1.1); 

Minna is drained by the many tributaries of River Chanchaga which takes its source from the 

North-Central highlands (Dalil et al., 2015). River Chanchaga flows westwards from these 

highlands before joining River Kaduna in the southwestern part of Minna. The main tributaries of 

this river are Rivers Wana, Shaho, Godina and Dunalape (Dalil et al., 2015). 

1.7.5 Geology and soils 

Geology: Akure and Minna have similar geological formations as they are both underlain by the 

Precambrian Basement Complex rocks (see Figure 1.3). Two petro-lithological units can be 

identified within these Basement Complex areas: the Migmatite-Gneiss Complex (MGC) and the 

Older Granites (Pan-African Granitoids) (Obaje, 2009). The Migmatite-Gneiss Complex, which is 

also referred to as the “migmatite-gneiss-quartzite complex” is largely a mix of migmatites, 

orthogneisses, paragneisses, and a series of basic and ultrabasic metamorphosed rocks (Rahaman 

and Ocan, 1978). The composition of the Older Granites (Pan African Granitoids) ranges from 

tonalities and diorites through granodiorites to true granites and syenites (Obaje, 2009).  

Owerri and Makurdi are underlined by sedimentary formations. Owerri is geologically situated in 

the Lower Benue Trough of Nigeria, mainly comprise of marine shales formed in the Paleocene 

and overlain by the tidal Nanka Sandstones of Eocene age (Obaje, 2009). Makurdi has geologically 

positioned in the Middle Benue Trough of Nigeria comprising Upper Cretaceous-Tertiary 

sediments, some of which predate the mid-Santonian tectonic episode, a period of folding 
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throughout the Benue Trough. The Middle Benue Trough is associated with Ezeaku formation 

formed at the onset of the marine transgression on the Late Cenomanian. The sediments are largely 

composed of calcareous shales, micaceous fine to medium friable sandstones and beds of 

limestones (Obaje, 2009). 

 

Figure 1.3 Geological Components of Nigeria (Obaje, 2009) 

Soils: Akure is mainly dominated by ferruginous tropical soils such as oxisols and utisols which 

exhibit considerable spatial variation in textural composition and drainage characteristics 

(Adeyemi, 2009). A greater portion of Minna is also covered by these ferruginous tropical soils 

(Areola, 1978). The characteristics of the soils are primarily a function of the underlying parent 

materials; the climate which is characterised by marked seasonality of rainfall; and the woodlands-

to-grassland type vegetation (Areola, 1978; Obateru, 2021). In areas underlain by biotite granite 

or gneiss, there are moderately deep soils which are close to rocky outcrops. In other areas, 

lithosols and shallow soils are the most extensive, especially around hills. The soils become 
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continuously deeper towards the valleys. They are ferruginized and characterised by a textural 

clayey subsurface layer. However, the clay layer is absent in the sandy soils developed on slope 

wash colluvium (Areola, 1978). The clay fraction is generally more than 30% and the cation-

exchange capacity is in excess of 30 meq/100 g of dry soil (Areola, 1978; Obateru, 2021). 

Owerri soils are formed from the coastal plain sand (known as acid sands) of the Benin Formation. 

They are mainly ultisols that are rich in free iron but have low mineral reserves (Okon et al., 2016). 

Makurdi is characterised by deep loamy soils of sedimentary origin with common soil classes such 

as lithosols, luvisols, aerosols, fluvisols, cambisols and regosols (Ali et al., 2021). 

1.7.6 Demographic characteristics 

The estimated population of Akure is 1.03 million people in 2022 at a 3.77% annual growth rate 

(City Population, 2022). The predominant ethnic group in Akure is Yoruba, mostly with the Ondo 

dialect. Other ethnic groups include the Igbira, Igbo, Hausa, and Edo. The population of Owerri 

was estimated to be 890,800 in 2022 at an annual growth rate of 4.07% while the Igbo constitute 

the predominant ethnic group, although there are other ethnic groups such as Yoruba, Hausa and 

Idoma (City Population, 2022). The estimated population of Makurdi in 2022 was 433,700 with 

an annual growth rate of 3.79% (City Population, 2022). Major ethnic groups in Makurdi are the 

Tiv, Idoma, Jukun, Igede, Alago, Etulo and Igbo. Minna’s population was estimated to be 600,800 

in 2022 at a 3.46% growth rate (City Population, 2022). Minna consists of two major ethnic groups, 

namely, the Nupe and the Gwari. Other ethnic groups include the Yorubas and Hausas. 

1.7.7 Socioeconomic activities 

The Rainforest and Guinea savanna ecoregions are both notable for agricultural production and 

commercial activities. The Rainforest is a prosperous agricultural production and trade centre for 
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maize, cassava, rice, banana, palm oil and kernel, rubber, okra, coffee, cocoa and pumpkins. For 

instance, Akure is strategically situated at the intersection of roads from Ondo, Ilesha, Ado-Ekiti, 

and Owo towns. It is a prosperous agricultural trade centre for maize, cassava, rice, banana, palm 

oil and kernel, rubber, okra, coffee, cocoa and pumpkins. Cocoa is the most significant locally 

produced commercial crop, however, cotton, teak and palm produce are also produced for export. 

Common economic activities in the core and outskirts of the city are trading and commerce, 

especially in traditional and modern markets. Over 50% of the residents are farmers some of whom 

combined this formal occupation with employment in the civil service or private firms. Common 

industrial activities are electronics manufacturing, soft drink bottling, garri (cassava flakes) 

production, cement block production, bakery, pottery as well as weaving of traditional clothes. 

Although Owerri is urbanising, agriculture remains an important part of the local economy, 

particularly in the surrounding rural areas of Imo State. The fertile soil and favourable climate of 

the region support a variety of agricultural activities, including the cultivation of cash crops like 

oil palm, cassava, yam, and maize. These crops contribute significantly to both local consumption 

and trade. In addition to crop production, the region also engages in poultry farming, fishery, and 

livestock rearing. 

Guinea savanna is renowned for producing agricultural products such as peanuts (groundnuts), 

Guinea corn (sorghum), maize, cotton, yam, ginger, and rice. Minna is about 150 km by road from 

Abuja, the capital of Nigeria, and is linked by rail to Kano in the north and Ibadan and Lagos in 

the south. Makurdi and Minna have been prominent rail collection points for agricultural products 

such as peanuts (groundnuts), Guinea corn (sorghum), maize, cotton, yam, ginger and rice. The 

economy also supports brewing, shea nut processing, and cattle rearing and trading. Other local 

trading activities involve kola nuts, goats, Guinea fowls and chickens. Cottage industrial activities 
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include metal work, leather work, weaving and dyeing of cotton clothes, raffia mats and baskets 

making, pottery and brassware. Modern industrial activities include brick manufacturing.  

1.8 Scope and Limitation of the Study 

1.8.1 Scope of the study 

This study focuses on the changes in urban landscape structure and ecosystem regulating services 

relative to the changing climate between 1986 and 2022 while predicting the future pattern of these 

changes, particularly in 2042. The choice of this temporal frame is informed by the increased rate 

of urbanisation and population growth in the last four decades (1981-2022) which coincide with a 

period of significant urban expansion and ecosystem degradation across ecological regions of 

Nigeria and West Africa. As a result, the surface energy balance within the urban planetary 

boundary layer has been modified, thereby altering the local, regional and global climate dynamics 

(Polydoros et al., 2018). In addition, an estimated 54.5% of the world’s population inhabits urban 

centres and this figure is expected to reach 66% by 2050 (MacLachlan et al. 2017; Fashae et al., 

2020). This emphasises the importance of evaluating future change (2022-2042). Thus, it becomes 

of paramount importance to assess the temporal changes in ecosystem regulating services relative 

to landscape structure and climate change as a means of provoking the adoption of actions that 

will ensure habitable climatic conditions over the rapidly growing urban centres in ecoregions of 

Nigeria and West Africa. 

The spatial scale of this study is limited to Akure and Owerri in the Rainforest ecoregion and 

Makurdi and Minna in the Guinea savanna ecoregion of Nigeria. These two ecoregions provide 

ideal locations for the study because of their eminence as the highly threatened ecoregions in 

Nigeria with degraded ethnobotanical diversity due to various anthropogenic activities and climate 
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change (Mengistu and Salami, 2007; Akinyemi, 2013; Fashae et al., 2017 Adenle et al., 2020b; 

Akinyemi et al., 2021). It is pertinent to justify the choice of the study locations within the 

ecoregions. Akure and Owerri are purposively selected because they are parts of the few urban 

centres in southern Nigeria where the structural and floristic composition of the vegetation still has 

considerable resemblance with that of a typical West African tropical Rainforest, although parts 

of the vegetal cover are gradually being transformed into derived savanna due to anthropogenic 

pressure. However, Makurdi and Minna are purposively selected because of their strategic position 

in the heart of the Guinea savanna ecoregion in northern Nigeria. In addition, they are large urban 

settlements in this ecoregion given their relevance as a collection point for agricultural produce in 

northcentral Nigeria (Obateru et al., 2024). Furthermore, although this study is focused on urban 

landscape structure, it will be inaccurate to create arbitrary boundaries for the metropolitan areas 

of the settlements in question since they continue to expand continuously within their spheres of 

influence. For instance, the metropolitan area of Akure continues to expand across Akure North, 

Akure South and Ifedore LGAs which constitute its sphere of influence, that is, its region. 

Similarly, the metropolitan area of Minna continues to expand between Bosso and Chanchaga 

LGAs which constitute its sphere of influence.   

The content scope of this study goes beyond land use and land cover change evaluation but 

encompasses the modelling of landscape structure which is a pertinent concept in landscape 

ecology. Only ecosystem regulating services are intended for assessment in this study using 

machine learning-based remote sensing, and ecological and socioeconomic techniques. Aspects of 

the ecosystem regulating services under consideration include carbon storage and sequestration, 

heat mitigation capacity, and stormwater retention, due to their relevance in circumventing the 

obstacles of planning for climate extremes and climate change in urban centres.   
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1.8.2 Limitation of the study 

The geospatial assessment of landscape changes was based on December scenes (dry season) from 

Landsat images, as this month provides better image quality for the study areas in terms of cloud 

cover and scene completeness compared to other months. While this approach allows for valid 

comparisons between cities, it may not fully capture the absolute ecological status of the landscape 

due to the significant biomass reduction typical of dry seasons. Additionally, even in December, 

atmospheric disturbances can affect satellite data and the indicators used in this study (Zeng et al., 

2022). The temporal spans in this study vary due to the availability and reliability of data. The 

assessment of landscape structure changes spans from 1986 to 2022, constrained by limited 

historical spatial data. Modelling the spatiotemporal distribution of ecosystem regulating services 

focuses on 2002–2022, reflecting the lack of consistent data before 2002. Climatic trends are 

analysed from 1981–to 2022, utilising historical climate records for a longer-term perspective. 

These temporal variations reflect the challenges of accessing comprehensive, high-quality datasets 

across all dimensions of analysis. 

The use of socioeconomic surveys, as conducted in this research, is also subject to participant bias 

(Meyer et al., 2019), despite perceptions inherently being subjective. Although a convenience 

sampling technique was used to administer the household questionnaire survey, some individuals 

chose not to participate for personal reasons. It is also worth noting that integrating remote sensing 

and social science approaches is challenging due to the differing levels of detail between satellite-

based indicators and survey participant perceptions. Nevertheless, combining these methods can 

help localise certain developments more effectively through social science expertise, ultimately 

enabling better on-the-ground management. 
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CHAPTER TWO 

2.0     LITERATURE REVIEW 

2.1 Conceptual Framework 

Landscape and landscape structure, ecosystem services and climate variability and change form 

the most striking conceptual premise for this study. A detailed definition of these concepts and a 

review of associated issues were dealt with in this section.  

2.1.1 Land use, land cover, landscape and landscape resilience 

Land use and land cover change (LULC) is a prominent component and driver of environmental 

dynamics globally through its influence on the earth’s landscape structure (Liu et al., 2020). Land 

use and land cover are two distinct terms. Land use relates to man’s use of land, while land cover 

has to do with land that is not dominated by human activity (Eigenbrod, 2016). Land use and land 

cover are usually collectively assessed as they are inseparable surface features of landscapes 

(Kaffy et al., 2021).  

Landscapes are composed of several basic units or elements and such units have been given several 

names such as patch, biotope, ecotope, landscape units, landscape element, landscape cell, 

landscape component, geotope, habitat, facies, and site, by landscape ecologists (Forman and 

Godron, 1986). Francis and Antrop (2021) characterised a mosaic as “a pattern of adjacent and 

connecting landscape units or patches”. Landscapes comprise a mosaic of patches (Urban et al., 

1987). Patches are dynamic and vary over space and time with respect to a specific organism’s 

perception and functional role (Wiens and Milne, 1989). Thus, the minutest or finest scale at which 

an organism perceives and interacts with patch structure is termed its grain. Grain is a function of 

the organisms’ physiological and perceptual abilities and it varies among species. “Extent is the 
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coarsest scale of heterogeneity, or upper threshold of heterogeneity, to which an organism 

responds” (McGarigal and Marks, 1994). Extent also varies species and the hierarchical level such 

as individual, population or metapopulation under investigation. According to McGarigal and 

Marks (1994), “a patch at any given scale has an internal structure that is a reflection of patchiness 

at finer scales, and the mosaic containing that patch has a structure that is determined by patchiness 

at broader scales (Kotliar and Wiens 1990)”. Patch boundaries are artificially delineated and 

become more meaningful when considered in relation to a specific scale, such as grain size and 

extent. 

Within the context of this study, the urban landscape is characterised according to Niemelä (1999) 

as spatial mosaics of different habitat patches, including buildings, roads, parks, gardens, and 

remnant natural areas, which interact dynamically with the human populations that inhabit them.  

Landscape resilience relates to the ability of a landscape to buffer disturbances and adjust to 

changing conditions, while still maintaining its essential functions, structure and identity (Abelson 

et al., 2022). It focuses on how ecosystems respond to ecological stressors such as urbanisation, 

natural disasters, and climate change.  

2.1.2 Landscape structure 

Landscape structure pertains to the spatial arrangement of different landscape components and 

their interconnections across various ecosystems or landscape elements (McGarigal et al., 2018). 

A landscape comprises various elements or patches, with the landscape matrix representing the 

most extensive and interconnected type of patch, thereby defining the landscape's functional role 

(Forman and Godron, 1986). For example, in a vast, uninterrupted area of primary forest 

interspersed with smaller patches of human activity such as logging, the primary forest serves as 
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the matrix due to its larger spatial extent and greater connectivity, thereby having a dominant 

influence on the flora, fauna, and ecological processes (McGarigal and Marks, 1994). 

In urban environments, landscapes can be viewed as mosaics of various land use patterns within 

heterogeneous regions featuring diverse ecosystems (Turner, 1989). These ecosystems are often 

associated with different LULC types. Thus, landscape patterns are defined by the configuration, 

proportion, and spatial arrangement of these land-use or land-cover elements (Hu et al., 2008). 

Changes in landscape structure can impact the provision of ecosystem services by altering the 

composition, functionality, structure, processes, and biodiversity of ecosystems (Mitchell et al., 

2015). Such changes can affect the flow of matter, energy, and ecological processes within the 

landscape, thereby influencing the delivery and sustainability of ecosystem services (Hu et al., 

2023; Hao et al., 2017). 

Generally, scale and pattern are central concepts in landscape ecology and geography (Levin, 

1992; Chen et al., 2021). Landscape structure indexing, a key analytical method in landscape 

ecology, is used to assess dynamics in LULC (Larondelle and Haase, 2013). Evaluating landscape 

structure can reveal the impacts of human activity on regional ecological patterns and how 

ecosystems respond to changes in land use over both spatial and temporal dimensions (Weng, 

2007). 

2.1.2.1    Characteristics of landscape structure 

Landscape structure is comprised of three components, namely, landscape composition, 

configuration, and connectivity (Forman and Godron, 1986; Mitchell, 2013).  

- Landscape composition relates to the nature and properties of diverse elements or patches 

(LULC types) – their number, shape and size – occurring in a landscape. It involves the 
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existence and abundance of patch varieties within a landscape, irrespective of their spatial 

placement (McGarigal and Marks, 1994). It aids the characterisation of landscape diversity 

(Francis and Antrop, 2021). Several quantitative measures of landscape composition exist, 

some of which include “the proportion of the landscape in each patch type, patch richness, 

patch evenness, and patch diversity” (McGarigal and Marks, 1994). Composition defines 

the landscape diversity 

- Landscape configuration is the spatial distribution of patches or elements (LULC) within 

the landscape. It involves the spatial distribution or arrangement of landscape elements 

(such as land use and land cover types) within a landscape. Certain features of landscape 

configuration, like patch contagion or patch isolation, provide insights into how patches 

are positioned relative to each other, landscape boundaries, or other relevant features. 

Additionally, aspects such as shape and core area reflect the spatial behaviour of these 

patches. Metrics like mean patch size and patch density indicate both the quantity and 

spatial distribution of specific patch types. However, because the characteristics of mean 

patch size and patch density are influenced by the complexity of spatial patterns within the 

landscape, these indices are often more useful for understanding landscape configuration. 

(McGarigal and Marks, 1994). 

- Landscape connectivity relates to the level to which the mobility of organisms and 

materials is enhanced by the landscape. 

2.1.3 Landscape structure metrics 

Landscape metrics are extensively used in landscape ecology studies because they allow for the 

evaluation of variations in the patterns of discrete ecosystem types and help identify structural and 

functional relationships within and between patches and LULC classes across a landscape unit or 



28 
 

ecoregion (McGarigal et al., 2002). As depicted in Figure 2.1, landscape dynamics involve 

temporal changes in landscape structure and function driven by natural events, human activities, 

and interactions between ecological and socioeconomic processes (Turner, 1989). Landscape 

function encompasses all biophysical processes and components that work together within a 

landscape to sustain ecosystem services, biodiversity, and human well-being (De Groot et al., 

2002). Comparing landscape metrics over time is useful for assessing landscape diversity, 

fragmentation, spatial isolation of ecosystems, and changes in their surface area, among other 

aspects (Badora and Wróbel, 2020) (Figure 2.1). Additionally, evaluating landscape heterogeneity 

using landscape metrics is crucial for quantifying ecosystem service characteristics (Syrbeand 

Walz, 2012) and for biodiversity protection (Marshall et al., 2020). 

The combination of landscape composition and configuration illustrates the complexity of the 

landscape, characterised by properties such as heterogeneity, coherence, and order, which can be 

assessed using information entropy (Francis and Antrop, 2021).  

Coherence refers to the degree of alignment between different elements in space or time (Francis 

and Antrop, 2021). Figure 2.2 demonstrates various configurations of landscapes with different 

patch types (A, B, and C). The middle series of sub-figures (a-d) highlights the impact of spatial 

configuration. Landscapes a, b, and c have equivalent richness or diversity, with the same two 

elements (A and B), but their complexity increases with fragmentation in cases c and d. Although 

these two scenarios share the same spatial configuration, their compositions differ, resulting in 

increased diversity to three. 

Landscape heterogeneity rises from cases a to d, as indicated by increases in entropy and decreases 

in evenness (Shannon’s entropy and evenness) (Figure 2.3). As the relative extent of type A 
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patches grows, the landscape transitions into a patch-matrix model. When the extent of type A 

reaches the critical percolation threshold (case c′), it becomes the matrix M. 

 

 

 

Figure 2.1 The Application of Landscape Structure Metrics (Lausch and Herzog, 2002) 
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Figure 2.2 Summary of Some Basic Concepts Related to Landscape Composition and 

Configuration (Francis and Antrop, 2021). 

Figure 2.3 illustrates the rasterised representation of a mosaic, where patches consist of adjacent 

grid cells with identical values. The spatial extent of types A and B is consistent across patterns 

a’, a”, and a’’’. The distribution of elements of the same type in space characterises the levels of 

fragmentation, contagion, interspersion, and autocorrelation among the patch types. The spatial 

autocorrelation of the grid cell patches ranges from maximum positive (Moran’s I metric = +1), 

through random distribution (most chaotic, I = 0), to maximum dispersion, as seen in the 
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quadratic tessellation (I = −1).

 

Figure 2.3 Examples of Landscape Metrics of Diversity and Heterogeneity for Patterns of 

Different Compositions and Configurations (Francis and Antrop, 2021). 

2.1.4 Ecosystems, ecological sustainability and ecosystem services  

Ecosystems are dynamic systems comprising communities of plants, animals, and microorganisms 

interacting with their non-living environment as integrated functional units (MA, 2005). 

Ecosystems are open systems that can allow the flux of energy and matter with other systems and 

are usually integrated into each other in a holarchy (Jørgensen and Müller, 2000). Holarchy is a 

system where the whole is governed by its parts. An ecosystem is spatially and temporally bounded 

as it may be a small water body, a patch of forest, an entire undisturbed landscape (Francis and 

Antrop, 2021), agricultural land, or urban areas (MA, 2005). Humans, although protected from 

environmental changes by culture and technology, is principally reliant on the flux of benefits 

derived from the ecosystems and such benefits have variously been termed ecosystem services 

(MA, 2005).  

Ecosystem sustainability relates to the capacity of an ecological system to maintain or restore its 

essential functions, processes and services over space and time while ensuring resilience in the 
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face of environmental changes and anthropogenic perturbations (Chapin III et al., 1996; USDA 

Forest Service, 2004). 

Ecosystem services (ES) encompass the full range of benefits or gains that humans derive from 

natural and semi-natural ecosystems, which contribute to their physical, social, and economic well-

being (MA, 2005; Mengist et al., 2020; Mitchell, 2021). ES are also described as “the ecological 

functions and utilities that humans rely on for survival, and are created and sustained by 

ecosystems and ecological processes” (Chen et al., 2021). The concept of ecosystem services was 

initially introduced by Daily et al. (1997) and was extensively assessed on a global scale through 

the 2005 Millennium Assessment (MA), a collaborative effort involving numerous scientists 

worldwide to evaluate the state of ecosystem services globally (MA, 2005). This assessment, 

combined with growing awareness of the degradation of many ecosystem services due to human 

activities and the lack of sufficient scientific data to manage these services, has spurred significant 

interest in ecosystem services research over the past 15 years (Mulder et al., 2015). Following the 

Millennium Assessment, various international initiatives have been undertaken, including The 

Economics of Ecosystems and Biodiversity (TEEB), which explores the links between global 

economic systems, ecosystem services, and biodiversity, as well as the Intergovernmental Science-

Policy Platform on Biodiversity and Ecosystem Services (IPBES) (Mitchell et al., 2021). IPBES 

aims to provide independent scientific knowledge to strengthen the science-policy interface for 

biodiversity and ecosystem services for the conservation and sustainable use of biodiversity, long-

term human well-being, and sustainable development (Díaz et al., 2015). The concept of ES has 

become integral to various conservation and sustainability programmes, such as the United 

Nations’ Sustainable Development Goals (Wood et al., 2018) and the Aichi Biodiversity Targets 
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(Díaz et al., 2015). It has also been incorporated into the initiatives of global conservation 

organisations like The Nature Conservancy and the World Wildlife Fund (Tallis et al., 2009). 

2.1.4.1    Categorisation of ecosystem services 

Over the years, various frameworks for categorising ecosystem services (ES) have been developed, 

including those by the Millennium Ecosystem Assessment (MA, 2005), the Economics of 

Ecosystems and Biodiversity, and the Common International Classification of Ecosystem Services 

(CICES) established in 2010. Among these, the Millennium Ecosystem Assessment (MA) (2005) 

is the most renowned and includes four broad categories: 

a. Ecosystem provisioning services involve the material goods that ecosystems provide. 

These encompass food, fibre, fresh water, fuel, genetic resources, biochemicals, natural 

medicines and pharmaceuticals, as well as ornamental resources. 

b. Ecosystem regulating services are ecological functions that improve conditions for human 

well-being. These include climate regulation (such as carbon storage and sequestration, 

and heat mitigation), air quality management, water regulation, stormwater management 

and erosion control, water purification and waste treatment, pest and disease management, 

pollination, and natural hazard mitigation. 

c. Ecosystem cultural services encompass the intangible benefits derived from ecosystems, 

including opportunities for recreation, spiritual enrichment, aesthetic enjoyment, cognitive 

development, reflection, and personal experiences. These services generally cover aspects 

such as cultural diversity, knowledge systems (both traditional and formal), educational 

values, inspiration, aesthetic appreciation, social relations, sense of place, cultural heritage, 

and recreational and ecotourism activities. 
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d. Ecosystem supporting services are fundamental processes within ecosystems that sustain 

all other services. Unlike provisioning, regulating, and cultural services, their effects on 

humans are typically indirect or manifest over a prolonged period. These services include 

the biogeochemical cycle, soil formation processes, photosynthesis and biomass 

production, and the hydrologic cycle (MA, 2005; Potschin and Haines-Young, 2011; Díaz 

et al., 2015). 

2.1.4.2     Evaluating ecosystem services 

A global assessment of ES status carried out by about a thousand leading scientists in 2005 

revealed that about 60% of the ES assessed were being degraded or unsustainably utilised, and this 

attained 70% when only regulating or cultural services were evaluated (MA, 2005). The ecosystem 

services approach is a well-established method for comprehensively assessing the ecological, 

social, and economic resources within landscapes (Syrbe and Walz, 2012). It provides a novel 

framework for understanding the interplay between natural ecosystems and human development 

systems (Liu et al., 2020). The assessment of ecosystem services often involves methods that 

consider monetary value, material benefits, and energy (Chen et al., 2020). For example, benefits 

transfer involves monetising ecosystem services based on data related to LULC changes, 

highlighting both the deficiencies and importance of these services (Xie et al., 2017). This method 

has been widely used in previous research due to its practicality and the availability of data (Liu 

et al., 2020).  

Moreover, the distribution of ecosystem services is neither uniform nor fixed across different 

landscapes or seascapes (Fisher et al., 2009). This emphasises the relevance of spatial resolution 

in depicting the indicators of ES. Syrbe and Walz (2012) pointed out that these services are offered 
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within process-related landscape units such as watershed, specific habitats, or natural units (Haase 

and Mannsfeld, 2002). 

Ecosystem services have been evaluated at various spatial scales for diverse objectives. Notably, 

much of the literature focuses on hydrological ecosystem services and urban ecosystem services. 

The former relates to the benefits offered by ecosystems associated with freshwater, including 

aquatic products, water purification, water supply, soil erosion and management, and biodiversity 

conservation (Cong et al., 2020). 

2.1.4.3    Methodologies for modelling ecosystem services 

Assessing ecosystem services involves a wide array of methodologies and models that integrate 

biophysical, economic, and social dimensions. Biophysical models like InVEST (Integrated 

Valuation of Ecosystem Services and Tradeoffs) and ARIES (Artificial Intelligence for Ecosystem 

Services) quantify ecosystem services based on spatial data and biophysical processes, providing 

scenario-based insights for decision-making (Villa et al., 2014; Sharp et al., 2018). The Soil and 

Water Assessment Tool (SWAT) is another widely used model that evaluates ecosystem services 

related to water resources, such as sediment retention and water quality regulation (Arnold et al., 

1998). 

Economic valuation methods, including contingent valuation, hedonic pricing, and replacement 

cost methods, assign monetary values to ecosystem services, enabling cost-benefit analyses 

(Costanza et al., 1997). Hybrid tools like Ecosystem Services Review (ESR) combine qualitative 

and quantitative assessments to guide businesses and policymakers in understanding the ecosystem 

service dependencies and impacts of their activities (WRI, 2008). Participatory methods such as 

Delphi surveys, focus group discussions, and participatory rural appraisals (PRA) involve local 
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stakeholders to identify and prioritise ecosystem services, especially those with cultural or spiritual 

importance (Martín-López et al., 2012). 

Geospatial techniques, including remote sensing and GIS-based mapping, support spatial 

assessments of ecosystem services by monitoring LULC changes, habitat quality, and carbon 

sequestration potential (Burkhard et al., 2012). Machine learning approaches, such as those used 

in spatially explicit modelling like LUCI (Land Utilisation and Capability Indicator), enhance 

predictive capabilities for ecosystem services under different land-use scenarios (Jackson et al., 

2013). In addition, integrative approaches like multicriteria decision analysis (MCDA) and System 

Dynamics Models incorporate diverse datasets and stakeholder preferences to analyse trade-offs 

among ecosystem services, fostering sustainable land management decisions (Reed et al., 2009). 

This diversity in methodologies ensures adaptability to various contexts and scales, enriching the 

understanding and management of ecosystem services. 

To tackle the incessant degradation of the natural ecosystem and associated ecosystem services for 

sustainable decision-making, several approaches for assessing, quantifying and estimating 

ecosystem services have been developed. Such approaches according to Arowolo et al. (2018) 

include “the revealed preference approaches (e.g., market prices and travel cost), the stated 

preference approaches (e.g., contingent valuation, and choice experiments), the cost-based 

approaches (e.g., avoided cost and replacement cost), and the benefits transfer” (Arowolo et al., 

2018). The benefits transfer approach has been extensively applied in the aspect of natural resource 

and environmental policies in the 1990s. The initial use of this approach was introduced by 

Costanza et al. (1997), who estimated the global economic value of 17 ecological services 

provided by 16 key ecoregions. This estimation was subsequently updated by Costanza et al. 

(2014) using a larger database of over 300 case studies worldwide. As a result, there has been 
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increasing global recognition of the need to address the adverse effects of urbanisation and 

economic development on ecosystems and their services (Arowolo et al., 2018). 

Ecosystems influence the hydrological functioning of catchments through their roles in 

precipitation interception, infiltration, evapotranspiration, and groundwater recharge. This 

influence can help mitigate the effects of climate variability on downstream environments 

(Locatelli, 2016). Hydrological ecosystem services have been empirically assessed in studies 

focusing on water resources and watershed management, including those by Wu et al. (2021) in 

China, Lüke and Hack (2017) in Nicaragua, Cong et al. (2020) in China, Duke et al. (2015) in 

Benin Republic, Decsi et al. (2020) in Hungary, and Palao et al. (2013) in the Philippines. These 

studies primarily compare the effectiveness of various models for evaluating hydrological 

ecosystem services, such as the Soil and Water Assessment Tool (SWAT), the Integrated 

Valuation of Ecosystem Services and Trade-offs (InVEST), the Resource Investment Optimisation 

System (RIOS), and the Variable Infiltration Capacity (VIC) model. Other ES models deployed in 

the literature include Co$ting Nature v.3 (C$N) (Prybutok et al., 2021), Multiscale Integrated 

Models of Ecosystem Services (MIMES) (Boumans et al., 2015), Social Values for Ecosystem 

Services (SolVES) (Sherrouse et al., 2011; Sherrouse et al., 2022), and the Geographical 

Information System for Collaborative Assessment and Management of Ecosystems (GISCAME) 

(Inkoom et al., 2018; Asante-Yeboah et al., 2024). 

In conclusion, the InVEST platform is ideal for assessing the impact of landscape structure on 

ecosystem regulating services due to its spatially explicit, scenario-based approach. It integrates 

biophysical, economic, and social dimensions, enabling robust evaluation of services like carbon 

storage, sediment retention, and water quality (Sharp et al., 2018). Thecompatibility of InVEST 

with geospatial data supports analyses of landscape changes and their ecological impacts. Unlike 
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other models such as SWAT or ARIES, InVEST provides comprehensive tools to quantify trade-

offs and synergies among ecosystem services, ensuring policy-relevant outputs that align with the 

objectives of sustainable land management and urban landscape dynamics. 

2.1.5 Climate variability and change 

Climatic variability refers to the inherent fluctuations in climate across various time scales 

(Ayoade, 2013). Climate can change from one month to the next, from season to season, and from 

year to year, as well as over decades, resulting in monthly, seasonal, annual, and decadal variations. 

Additionally, the climate in a particular region consistently deviates around its average state over 

a specified period, such as a month, season, or year. These variations are referred to as climatic 

noise if they are small but become climatic anomalies if they are large. Variability of climate about 

the mean state shows different characteristics, which may be periodic, quasi-periodic or non-

periodic in nature (Ayoade, 2013). 

The Intergovernmental Panel on Climate Change (2007) describes climate as the average weather 

conditions or the statistical mean and variance of climatic variables such as temperature, 

precipitation, and wind over extended periods. Climate change refers to substantial alterations in 

these elements—temperature, precipitation, wind patterns, and others—over many decades or 

more (IPCC, 2001). It represents a long-term shift, which could be towards warmer, cooler, wetter, 

or drier conditions. According to the World Meteorological Organisation (WMO, 1987), a classical 

period for assessing climate change spans at least 30 years. 

Global warming is often viewed as a precursor to climate change. It describes the recent increase 

in the Earth's average surface temperature, primarily due to rising levels of greenhouse gases like 

carbon dioxide and methane (Khan, 2008). While “global warming” and “climate change” are 
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sometimes used interchangeably, warming is just one aspect of how climate is influenced by 

elevated greenhouse gas concentrations (EPA, 2017). 

The causes of climate change are generally classified into natural and human-induced factors. 

Natural causes include variations in Earth's orbit, changes in solar radiation, ocean current shifts, 

the Earth's axial tilt, volcanic eruptions, and collisions with comets or meteorites. However, since 

the 1950s, climate scientists have identified human activities as the main driver of global warming 

(IPCC, 2013). Activities such as burning fossil fuels, wetland agriculture, livestock farming, and 

deforestation release greenhouse gases into the atmosphere faster than natural processes can 

remove them. This has led to an increase in atmospheric CO2 levels by over 40% since pre-

industrial times, reaching levels not seen in at least 800,000 years (IPCC, 2013). Since the 1800s, 

it has been recognised that greenhouse gases trap heat, preventing its escape into space. 

 

2.1.6 Relationship between landscape structure and ecosystem services and climate change 

Landscape structure and ecological processes interact in a complex and non-linear relationship, 

influenced by feedback mechanisms (Liu et al., 2020). Changes in landscape structure involve 

material cycling, energy flow, and ecological interactions between social and biophysical systems 

(Liu et al., 2020). This interaction disrupts climatic conditions, soil characteristics, hydrological 

processes, and biogeochemical cycles, while also impacting natural elements like biodiversity, 

thereby altering ecosystem patterns, components, and functions. Additionally, spatial and temporal 

variations in ecological processes such as microbial decomposition, nutrient mobility, soil erosion, 

and sediment transport are unavoidable and have substantial effects on the provision and 

management of ES. According to Liu et al. (2020), ecosystems with minimal human disturbance 
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typically show lower levels of provisioning services but higher levels of regulating and supporting 

services. Mild human development tends to increase provisioning services while decreasing 

regulating and supporting services, as extensive human interference often leads to the degradation 

of various ecosystem services. In areas with high levels of anthropogenic activity, significant 

modifications to the natural landscape occur, and the landscape structure index effectively reflects 

the impact of these disturbances on landscape patterns (McGarigal et al., 2018). 

Mitchell et al. (2013) indicate that landscapes with moderate or intermediate levels of natural 

habitat fragmentation and anthropogenic interference are likely to provide the highest levels of ES 

delivery. The rapid urban expansion and population growth in global metropolitan areas have led 

to substantial alterations in both natural and human-modified landscapes (Chen et al., 2021), 

resulting in increasing degradation of ecosystem services in both urban and rural areas. Typically, 

urban expansion reduces cultivated land, which in turn diminishes ES potential and regional 

biodiversity. Additionally, the expansion of transportation networks can exacerbate landscape 

fragmentation, habitat degradation, and ecological imbalance (Chen et al., 2020). Conversely, 

certain landscape modifications, such as afforestation and land consolidation projects, can enhance 

ES delivery (Chen et al., 2021). 

The adverse effects of climate change on human societies are closely related to the adaptive 

capacities of species and ecosystems that provide essential resources like food, shelter, fuel, and 

fibre, as well as the broader ecosystem services (van der Geest et al., 2019). Dow et al. (2013) 

explored the connection between ecosystem functioning and climate change, revealing that 

temperature changes impact plant pollination and flowering stages in South Asia. Specifically, 

each 1°C increase in nocturnal temperature above 26°C results in a 10% decrease in productivity, 

with temperatures exceeding 35°C rendering certain rice species non-cultivable, leading to 
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significant economic losses for farmers, traders, and the broader economy (Dow et al., 2013; van 

der Geest et al., 2019). The ongoing global issue of climate change is closely linked to the health, 

structure, and functionality of the biosphere (Malhi et al., 2021). Climate change exacerbates other 

pressures on ecological systems, leading to increased habitat degradation, defaunation, and 

fragmentation (Malhi et al., 2021). Africa is particularly vulnerable, with temperature increases in 

the 21st century projected to be between 3°C and 4°C—approximately 1.5 times the global average 

rise (Cavan et al., 2014). By 2035, it is anticipated that 50% of Africa's population will live in 

urban areas, with the continent currently around 40% urbanised and experiencing an annual urban 

growth rate of 1.27% (Cavan et al., 2014). 

2.1.7 Conceptual premise of the study 

In light of the conceptual definitions and reviews that have been done in the preceding sub-sections 

of this chapter, it is apparent that three principal concepts form the premise of this study and they 

include landscape structure, ecosystem regulating services, and climate. Each of these concepts is 

associated with specific variables which allow them to be quantified. For instance, for this study, 

landscape structure can be characterised by three main parameters which include landscape 

composition, configuration and connectivity/aggregation. Parameters that were assessed under 

ecosystem regulating services include carbon storage and sequestration, heat mitigation, and 

stormwater retention. Climatic condition was assessed by analysing the spatiotemporal pattern of 

precipitation and temperature. The interaction between three principal concepts has been dealt with 

in subsection 2.1.6. Thus, a framework of how these concepts and their associated variables 

interact and interrelate to influence, LULC, ecosystem regulating services, landscape resilience, 

and ecological sustainability is depicted in Figure 2.4.  
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Figure 2.4 Conceptual Framework Depicting the Link between Landscape Structure, Ecosystem 

Regulating Services and Climate and Their Influence on Landscape Characteristics and Ecological 

Sustainability. 

 

2.2 Theoretical Framework 

2.2.1 Patch-corridor-matrix (PCM) mosaic model 

The Patch-Corridor-Matrix (PCM) Mosaic Model, introduced by Forman and Godron (1986), is 

one of the earliest conceptual frameworks for understanding landscape structure (Francis and 

Antrop, 2021). Also known as the patch-matrix model (PMM), this model originated in North 

America (Lausch et al., 2015) and has gained international recognition for its role in structurally 

characterising and mapping landscape mosaics within the field of landscape ecology (Forman, 

1995; Cvetković et al., 2019). The PCM model identifies three fundamental components that 

define landscape structure: patches, corridors, and the matrix (see Figure 2.5). This model serves 
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as a valuable tool for assessing land use systems and their dynamics, facilitating the application 

and interpretation of quantitative landscape indices (Forman, 1995). 

According to Lausch et al. (2015), patches are homogenous spatial units of a particular type of 

LULC with distinct individual features such as size or shape, and ecological functions such as 

isolation of populations (Wiens, 1989). The distribution of patches of different LULC types in 

space in a specific creates a characteristic landscape structure (Forman, 1995), which has likewise 

been termed a patch mosaic (Turner, 1989). Landscape pattern or landscape structure is the product 

of the composition and configuration of patches. The domineering background LULC type of the 

landscape constitutes the matrix (Lausch et al., 2015). Forman and Godron (1986) characterised 

landscapes as habitat patches intermingled with smaller stepping stones and linked with corridors 

– all of those entrenched within the inhabitable matrix. 

 

Figure 2.5 Representation of Landscape Structure based on the Patch-Corridor-Matrix Model 

(Lausch et al., 2015) 
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The initial inspiration behind the PCM was propelled by species conservation and not by an 

anthropogenic outlook. However, the lucidity of the PCM, its compatibility with geographic data 

types and the accessibility to remotely sensed data coupled with conventional classification 

techniques fostered the extensive utilisation of the PMM largely beyond its envisioned purpose 

(Lausch et al., 2015). This was demonstrated in a study by Cvetković et al. (2019) successfully 

adopted the PCM model as a theoretical framework for identifying the components and resource 

potential as well as for planning and designing urban green infrastructure based on patterns of 

landscapes in Belgrade, Serbia. Based on this framework, Cvetković et al. (2019) and Benedict 

and Makmahon (2002) recognised two important components of the green infrastructure, namely, 

the hubs and links. Hubs can include areas such as parks, open spaces, nature reserves, agricultural 

lands, and forests. Links refer to the connections between these hubs, such as green corridors and 

green belts, which facilitate the flow of ecological processes. Despite the precise delineation of 

these units or elements, natural boundaries are not as clearly defined (Cvetković et al., 2019). The 

hierarchical levels of typical urban landscape elements based on the PCM model were presented 

by (Cvetković et al., 2019) (Table 2.1). 
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Table 2.1 Urban Landscape Elements Classified in the Patch-Corridor-Matrix Model 

Sorted by Levels 

Element Scale 

Region/City District/Neighbourhood Individual 

Sites/Buildings 

Urban Patches/Hubs 

and spots 

- Wetlands 

- Regional 

parks 

- River islands 

- Park forests 

- Forests 

- Parks 

- Community 

gardens 

- Botanic gardens 

- Cemeteries 

- Sport fields 

- Squares 

- Vacant lots 

- Individual 

gardens 

- Green roofs 

- Terraces 

Urban 

Corridors/Lines 

- Rivers 

- Canals 

- Riverways 

- Drainageways 

- Roads 

- Powerlines 

- Inner block lanes 

- Tree alleys 

- Green roofs 

- Individual 

trees 

- Vertical 

gardens 

 

Urban Matrix  - Residential 

neighbourhoods 

- Industrial 

districts 

- Waste disposal 

areas 

- Commercial 

areas 

- Mixed-use 

districts 

 

Adapted from Cvetković et al. (2019) 
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2.2.2 Limitations of the PCM model and the emergence of the gradient model 

It is notable to mention that the PCM model is largely focused on a two-dimensional depiction of 

landscape structure, although attempts have been made by Hoechstetter et al. (2008) and Stupariu 

et al. (2010) to integrate higher dimensions into the PCM-based landscape depiction (Lausch et 

al., 2015). Lausch et al. (2015) pointed out that a shortcoming of the PCM model stems from the 

fact that discrete boundaries are delimited for patches. It was further argued that discrete 

boundaries between adjacent land-cover varieties seldom exist in reality. Rather, there is usually a 

gradual transition between adjoining land cover types. This argument may be considered valid for 

natural landscapes with minimum human interference, and even at that, such landscapes may be 

characterised by topographical features with definite boundaries such as extensive rock outcrops 

and lakes. In anthropogenic settings, forest reserves, residential land use, industrial layout and 

administrative areas, are landscape elements with somewhat defined boundaries. This gives 

credence to the urban landscape elements classification presented in Table 2.1 as adopted by 

Cvetković et al. (2019). Other limitations of the PCM as reviewed by Lausch et al. (2015) include: 

a. the classification systems used for LULC significantly impact the quantitative outcomes in 

landscape ecology.; 

b. the choice of classification and the depth of data can affect quantitative analyses (Wickham 

et al., 1997); 

c. selected landscape pattern metrics can be highly sensitive to errors in land-cover 

classification (Wickham et al., 1997); 

d. variations in landscape extents can result in non-comparable quantifications across 

different landscape segments (Lausch and Herzog, 2002);  

e. there is a lack of standardised protocols for classifying different types of LULC. 
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With the increasing realisation of the problems in asserting significant, vigorous and generalisable 

relationships between PCM-based landscape indices and ecological indicators, scientists continued 

to search for alternative methods of quantitatively assessing landscape structure. This led to the 

evolution and popularisation of the Gradient Model (GM) by Müller (1998), McGarigal and 

Cushman (2005), and McGarigal et al. (2009).  

The Gradient Model (GM) illustrates landscape structural characteristics through continuous data 

within a raster or grid framework. In this model, each cell or pixel in the grid is treated as the 

smallest uniform and distinct spatial unit, allowing for gradual variations in the landscape's 

appearance (Lausch et al., 2015) (Figure 2.6). 

 

Figure 2.6 Representation of Surface Metrics based on the Gradient Model (Lausch et al., 2015) 

According to Lausch et al. (2015), “the GM does not make any further assumptions about the 

shape, size and configuration of homogenous areas, which also excludes the need for delineating 

and defining arbitrary sharp boundaries between such areas”. In addition, the Gradient Model 

(GM) subtly allows for a three-dimensional representation of landscape structure, with the third 
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dimension incorporated through the range of values of a specific variable, such as habitat 

suitability, elevation, or soil moisture. 

2.2.3 Justifying the choice of the theoretical framework for this study 

Even though the gradient model emerged as a result of the aforementioned shortcomings of the 

PCM model, it cannot work well in understanding the dynamics of landscape structure in specific 

ecological regions as intended in this study. This assertion is based on Francis and Antrop (2021) 

recommendation that gradient models are most useful in appreciating landscape structure of 

ecotones, permeability, eco-fields, flow, and diffusion processes, among others. Although the 

PCM model has been faulted on certain grounds, models are not expected to perfectly illustrate 

reality as they are mere abstractions of reality. Furthermore, GM models typically focus on 

representing a single variable of interest, such as elevation, habitat suitability, or vegetation 

density, within a landscape. (Lausch et al., 2015). This relates to one land-cover type in the PCM. 

In GM landscape representations, the extraction or calculation of landscape metrics from 

continuous surface maps is very difficult. Moreover, the quantitative analysis of pattern 

appearances is less forthright relative to PCM-based landscape metrics. Hence, the output results 

from such GM-based landscape metrics can be somewhat challenging. Given the aforementioned, 

the PCM model is considered the most appropriate for this study coupled with its established 

applicability to the urban landscape as demonstrated by Cvetković et al. (2019) (see Table 2.1). 

2.3     Review of Related Studies 

This section presents a review of studies that have assessed the link between landscape dynamics. 

Examples from different regions of the world were evaluated; their summary is presented in Tables 

2.2 a and b. 
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In an attempt to circumvent the problem of data unavailability in the Sudanian savanna region of 

West Africa, Inkoom et al. (2017) used neutral landscape models (NLM) to simulate agricultural 

landscapes in the Vea catchment of the Upper East Region of Ghana. NLM is a process-oriented 

approach designed to generate landscapes while omitting the effects of underlying ecological 

processes that typically shape landscape configuration and composition (Gaucherel et al., 2008). 

This study illustrated that simulating West African landscapes with NLM can serve as an 

alternative to lacking or expensive spatial data and validated the theoretical connection between 

patchy landscape structure and ecosystem provisioning through simulation. The principal 

limitation of this study includes: the physical environmental variables that could influence 

landscape structural patterns and ecosystem services on a regional scale were not incorporated in 

the work; the study is particularly biased toward agricultural landscapes and ecosystem provision 

services. 

Given the growing susceptibility of the West African Sudanian savanna landscapes to the impacts 

of climate change, Inkoom et al. (2018) evaluated the ability of agricultural landscapes to provide 

ecosystem regulating services and enhance the resilience of land systems to climate change within 

the Vea catchment in the Upper East Region of Ghana. This was done through an integrative 

process that combined landscape metrics, geographic information systems, remote sensing, and 

expert weighting approaches. Specifically, the study adopted the GISCAME framework which 

fosters the creation of LULC change scenarios alongside experts or based on transition 

probabilities (Frank et al., 2013). GISCAME includes a collection of landscape metrics to evaluate 

fragmentation, connectivity and landscape diversity as criteria that might influence landscape 

potentialities to provide ecosystem services. The study found that landscapes with high 

heterogeneity are better at offering pest and disease control, whereas less heterogeneous 
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landscapes are more effective at providing climate control. The methods used in this research 

demand a broad range of datasets, particularly those with high spatial and temporal resolution. 

Consequently, the authors recommended using neutral landscape models similar to those 

employed by Inkoom et al. (2017). 

In an effort to effects of rising human activities on natural ecosystems, Arowolo et al. (2018) 

examined changes in ecosystem service values in relation to land use and land cover dynamics 

across Nigeria from 2000 to 2010. The LULC dynamics were inferred from the GlobeLand30 land 

cover maps, while ES was evaluated using the value transfer methodology (see Costanza et al., 

2014). It was reported that the spread of agricultural lands forests and savanna areas was 

predominant, especially in northern Nigeria, over a decade. The value of provisioning services 

increased, while regulating, supporting, recreational, and cultural services experienced a decline. 

Notably, water regulation (−11.01%), air regulation (−7.13%), cultural services (−4.84%), and 

climate regulation (−4.3%) were identified as the most affected ecosystem functions. Since this 

study was conducted at a national scale, fine-scale variability in the value of ES might have been 

concealed. Also, the evaluation of landscape dynamics was restricted to landscape composition 

(LULC), rather than landscape structure. 

Other studies that emphasised the interaction between landscape dynamics and ecosystem services 

in West Africa include Asante-Yeboah et al. (2024) (Ghana), Kleemann et al. (2017) (Ghana), 

Hanna and Gordon (2014) (Sudano-Sahelian zone of West Africa), Tiando et al. (2021) (Benin 

Republic) Gnansounou et al. (2022) (Togo-Benin Republic), Arowolo et al. (2020) (Nigeria), 

Adenle et al. (2022) among others. 
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2.4 Studies from Other Regions of the World  

In evolving sustainable guidance for landscape and ecosystem management, Liu et al. (2020) 

conducted a quantitative assessment of spatial variations in landscape patterns within the Middle 

Reaches of the Yangtze River Urban Agglomerations in China, focusing on the spatial distribution 

of ecosystem services value for the year 2015, using a modified benefit transfer method. The study 

utilised land use and land cover data to derive various landscape pattern metrics. The effect of 

landscape patterns on ecosystem service value was analysed through ordinary least-squares 

techniques and spatial regression models. The results indicated that landscape patterns have a 

significant influence on ecosystem services. Additionally, the study highlighted that ecosystem 

services exhibit notable spatial spillover effects and that cross-regional collaborative governance 

could enhance landscape planning efficiency. It is important to note that Liu et al. (2020) placed 

less emphasis on the temporal distribution of landscape characteristics and ecosystem services, as 

the study focused solely on a single year (2015). It is notable to point out that the study by Liu et 

al. (2020) gave less importance to the temporal distribution of landscape characteristics and ES as 

one time period (2015) was taken into consideration. 

In using multiple regression and canonical redundancy analysis to assess how landscape 

composition and configuration influence the supply of ecosystem service bundles across 130 

municipal areas in an agricultural region of Southern Québec, Canada, Lamy et al. (2016) found 

that both LULC composition and configuration are crucial in explaining the notable variation in 

ecosystem service provision in landscapes undergoing a transition from forest to cultivated 

landscape. Specifically, the study showed that “landscape structure explains 66%, 41% and 32% 

of the variation in carbon sequestration, deer hunting, and soil organic matter respectively but only 

5%, 4% and 3% of the variation in water quality, tourism, and summer home value” (Lamy et al., 
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2016). The study also found that each ecosystem service bundle was linked to a particular zone 

within the landscape, which corresponded to the gradient between forest and cultivated landscape. 

However, specific studies have evaluated landscape structural patterns and ES from both spatial 

and temporal perspectives. Using multiscale buffer gradient analysis techniques and economic 

models, Chen et al. (2021) evaluated the evolution of landscape patterns and the value of ES in 

metropolitan Wuhan, China. The study specifically examined how landscape patterns affect 

ecosystem services using econometric models from 2000 to 2015. It found that rapid urbanisation 

has led to substantial alterations in landscape patterns, with landscape metrics displaying notable 

spatial variability. Also, the value of ES declined greatly relative to the landscape pattern. The 

limitation inherent in the study by Chen et al. (2021) as noted by the authors is that the evaluation 

“adopted the non-spatial panel model to measure the impact of landscape patterns on ecosystem 

services without considering spatial spillover effects” (Chen et al., 2021). Moreover, the study 

focused solely on quantifying how landscape patterns affect ecosystem service delivery, without 

considering the interplay between landscape structure, ecological processes, and ecosystem 

services. Chen et al. (2021) also highlighted the necessity of gathering field data and employing 

more systematic and rigorous methods to better illustrate the connections between landscape 

structural patterns and ecosystem service provision across various spatial scales. 

Badora and Wróbel (2020) studied the spatial dynamics of the landscape structure of the isolated, 

protected forest complex of the Niemodlin Forests in southwestern Poland from 1825 to 2019. 

Landscape structure metrics were solely adopted to investigate the entirety of the landscape as well 

as the individual ecosystems that constitute the entire landscape. Stemming from the landscape 

metrics analysis, the study noted the relevance of ecological gradients in the delivery of ES 

associated with biodiversity protection and also pointed out that continuous habitat fragmentation 
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would lead to an increase in the length of ecological gradients. Badora and Wróbel (2020) further 

asserted that landscape indices spanning a large habitat or region may not illustrate the changes 

taking place in discrete land cover types, but are a mere average image of the entire landscape; 

thus, landscape indices must be assessed individually for discrete classes of ecosystems and 

separately for the entire landscape. It is important to note that the temporal scale of the study by 

Badora and Wróbel (2020) is too coarse as only the landscape structure for 1825 and 2019 was 

analysed. This does not give the opportunity to understand the trend of the dynamic interactions 

operating in the ecosystems within the study period. Additionally, the assessment of biodiversity 

protection as a form of ecosystem supporting services was not empirically carried out. The 

behavioural dynamics of biodiversity protection were only inferred from landscape structure 

analysis across the ecosystem classes and the entire landscape. 

As in other parts of Africa and the globe at large, land degradation and ES discontinuation are 

prevalent environmental challenges in Ethiopia. In a bid to understand these dynamic problems, 

Biratu et al. (2022) assessed past and predicted future landscape changes and estimated the 

associated ecosystem services in the Rift Valley Basin of Ethiopia. While the benefit transfer method 

was employed to estimate ecosystem service values from land use and land cover (LULC), the 

study utilised a machine learning approach incorporating the Maximum Likelihood Classifier and 

Cellular Automata Artificial Neural Network (CA-ANN) models, which integrate the Module for 

Land Use Change Evaluation (MOLUSE) to analyse and predict LULC changes. LULC was 

analysed for 1986-2021, while a future prediction from 2021 to 2051 was made. The study 

highlighted four key findings: (a) there has been a notable increase over time in the conversion of 

various landscape types to agricultural land, bare land, and built-up areas; (ii) the estimated value 

of ecosystem services decreased by USD 58.3 million and USD 85.4 million for the periods 1986–
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2021 and 1986–2051, respectively; (iii) anthropogenic and environmental factors, which are major 

drivers of the significant decline in ecosystem service values, are expected to continue 

exacerbating habitat degradation and loss; and (iv) if the current trends in landscape transformation 

and anthropogenic pressures persist without adequate policy and management interventions, the 

further degradation of habitats and ecosystem services could increasingly negatively impact human 

well-being. To address these issues, the study recommended implementing effective land use 

policies that protect natural ecosystems, promoting sustainable intensification, and undertaking 

ecosystem restoration actions. Additionally, it suggested enhancing landscape rehabilitation 

through protection, afforestation, and conservation measures. 

Moreover, Ntshane and Gambiza (2016) applied the biodiversity modelling algorithm of the 

InVEST model to evaluate the capability of habitats to support the provision of ES in a protected 

area in South Africa. The study reported that while 72% of the investigated habitats have a high 

potential for providing necessary services, moderate to high ecological threats were observed in 

habitats proximate or adjacent to urban centres, mining areas, plantations, and cultivated lands. 
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Table 2.2a Summary of Some Reviewed Literature 

S/N Author Objective Methods Location Key Findings Limitation 

1 Lamy et al. 

(2016) 

The relative effect of 

landscape 

composition and 

configuration on the 

supply of ES bundles 

Landscape metrics, 

multiple regression 

and canonical 

redundancy analysis 

130 

municipalities in 

Southern 

Québec, 

Canada. 

Significant ES variation at 

forest and agricultural LULC 

transition zone 

No temporal assessment 

2 Liu et al. 

(2020) 

Spatial variation in 

landscape patterns 

relative to the spatial 

distribution of 

ecosystem services 

Landscape metrics, 

Benefit transfer 

method, ordinary 

least-squares 

technique and spatial 

regression models 

Yangtze River 

Urban 

Agglomerations, 

China. 

ES are significantly impacted 

by landscape patterns 

No temporal assessment 

3 Chen et al. 

(2021) 

Spatio-temporal 

evolution of 

landscape pattern and 

ecosystem services 

value 

Landscape metrics, 

gradient analysis 

approach, econometric 

models 

Wuhan, China Urbanisation significantly 

altered landscape pattern and 

declined ES value 

A non-spatial panel 

model was used; the 

relationship between 

landscape pattern and ES 

was not analyzed 

4 Badora and 

Wróbel 

(2020) 

Spatial dynamics of 

the landscape 

structure of the 

isolated, protected 

forest complex  

Landscape metrics Niemodlin 

Forests in 

southwestern 

Poland  

Ecotones are relevant in the 

delivery of ecosystem; 

continuous fragmentation of 

the landscape would increase 

the length of ecotonic 

structure services associated 

with biodiversity protection  

No quantitative 

assessment of 

biodiversity protection 

across ecosystems; the 

temporal scale of 

landscape structure 

analysis is too coarse 
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Table 2.2b Summary of Some Reviewed Literature (continuation) 

S/N Author Objective Methods Location Key Findings Limitation 

5 Biratu et al. 

(2022) 

Past and predicted 

future landscape 

changes and 

estimated the 

associated ecosystem  

Maximum likelihood 

classifier and cellular 

automata artificial 

neuron network (CA-

ANN) 

Rift Valley 

Basin of 

Ethiopia 

Past and future increases in 

habitat losses and associated 

decline in ES values 

Variations in landscape 

transformation drivers 

were not assessed using 

field observation; ES 

evaluation was based on 

mere supposedly 

expected ES according to 

the approach adopted. 

6 Inkoom et 

al. (2017) 

Simulation of 

agricultural 

landscapes 

Neutral landscape 

models and Voronoi 

tessellation method 

Upper East 

Region, Ghana 

Alternative to unavailable or 

expensive spatial data in data-

scarce regions of West Africa 

Physical environmental 

variables that could 

influence landscape 

structural patterns and 

ecosystem services on a 

regional scale were not 

incorporated in the work; 

the study is particularly 

biased towards 

agricultural landscapes 

and ecosystem provision 

services. 

7 Arowolo et 

al. (2018) 

Changes in the value 

of ES in response to 

LULC dynamics  

LULC change 

detection and value 

transfer method 

Entire Nigeria Increase in the value of 

provisioning services and 

decrease in the value of 

regulating, supporting, 

recreation and culture 

services due to the spread of 

agricultural land. 

The coarse dataset may 

not reveal small-scale 

variability; landscape 

structure was not 

assessed but rather 

landscape composition 

(LULC) 
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2.5 Overview of Key Issues 

Ecosystem services degradation persists as an eminent global challenge bearing upon livelihoods 

and human well-being. Land degradation, biodiversity loss, and climate change are recognised as 

the primary factors contributing to the deterioration of ecosystem services (Biratu et al., 2022). 

Although multiple factors can initiate land degradation and biodiversity loss, changes in land use 

and land cover (LULC) are considered the most significant spatially and temporally (Abera et al., 

2021). LULC change encompasses alterations in land cover types (e.g., converting forests to 

agricultural land or grasslands to cultivated areas) and shifts in land use practices (e.g., moving 

from rain-fed to irrigated agriculture) (Biratu et al., 2022). 

The central aim of monitoring ecosystem services (ES) is to equip decision-makers and 

policymakers with the necessary information to implement strategies that ensure the sustainable 

provision of services and benefits to meet societal needs. The Intergovernmental Platform on 

Biodiversity and Ecosystem Services (IPBES) particularly benefits from up-to-date ES 

assessments (Balvanera et al., 2017). IPBES focuses on enhancing the science-policy interface for 

biodiversity and ecosystem services, aiming to conserve and sustainably use biodiversity for long-

term human well-being and sustainable development. IPBES seeks to establish strategic 

partnerships, including with monitoring programmes, to support its work programme (Balvanera 

et al., 2017). 

In urban areas, forests and trees are crucial for adapting to climate variability and change due to 

their roles in regulating temperatures (through shading and evaporative cooling) and hydrological 

processes (by intercepting and infiltrating precipitation). Urban environments, with their extensive 

impervious surfaces, are prone to flooding, but urban forests, parks, and trees can help reduce 

runoff. For example, research (Gill et al., 2007) indicates that green spaces can mitigate the urban 
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heat island effect, which exacerbates the health risks of heatwaves. Urban ecosystem-based 

adaptation requires a deep understanding of landscape structure and the potential of green 

infrastructure to enhance the well-being of vulnerable populations, as demonstrated in Durban, 

South Africa (Roberts, 2012). 

Forest degradation and deforestation, which drive changes in landscapes and lead to the depletion 

of ecosystem services, account for approximately 17% of global carbon emissions that contribute 

to climate change and global warming. This impact is greater than that from the global transport 

sector and is second only to emissions from the energy sector (National REDD+ Programme, 

2021). To address this issue, the 2015 Paris Agreement mandates that nations collaborate to limit 

the rise in global average temperature to below 2°C. Achieving this goal may be challenging 

without a significant reduction in emissions from the forest sector, alongside other mitigation 

measures. Consequently, parties to the United Nations Framework Convention on Climate Change 

(UNFCCC) have established the Reducing Emissions from Deforestation and Forest Degradation 

(REDD+) framework. REDD+ aims to create economic value for the carbon stored in forests by 

offering incentives to developing countries to reduce emissions from forested areas and invest in 

sustainable, low-carbon development. The “+” in REDD+ signifies that the framework extends 

beyond deforestation and forest degradation to include forest conservation, sustainable 

management, and enhancement of forest carbon stocks (FREL, 2019). 

Additionally, national governments are signatories to various multilateral environmental 

agreements, such as the Convention on Biological Diversity (CBD), which rely on scientific and 

technical bodies to assess the progress of implemented decisions (Balvanera et al., 2017). At the 

national level, ecosystem service (ES) monitoring systems could develop mechanisms for local 

stakeholders to contribute to and integrate into the national system. City and regional governments 
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can facilitate local stakeholder involvement and help assess ES at local scales (Balvanera et al., 

2017). Existing observation platforms for local-scale ES monitoring include ARIES, MIMES, the 

Ecosystem Service Partnership, the International Long-Term Ecological Research Network 

(www.ilternet.edu), the Natural Capital Project, the Program for Ecosystem Change and Society 

(PECS), the Sub-Global Assessment Network, the Tropical Ecology Assessment and Monitoring 

Network (www.teamnetwork.org), ESCom Scotland, and Vital Signs (Balvanera et al., 2017). 

Nigeria is among the countries with the highest rates of deforestation and forest degradation 

globally, with an estimated annual rate of 3.7% (163,359 ha) (FREL, 2019). Between 1978 and 

2016, the country lost about 18% of its forest cover due to land use and land cover changes. The 

primary drivers of land and ecosystem degradation in Nigeria include agricultural expansion, high 

reliance on wood fuel (particularly firewood and charcoal), unsustainable timber harvesting, urban 

expansion, grazing, bush burning, infrastructure development, and underlying issues related to 

governance, poverty, and technology (FREL, 2019). 

As a participant in the UNFCCC and a signatory to the 2015 Paris Agreement, Nigeria has 

recognised the importance of protecting landscapes and ecosystems and the need for international 

support to develop and implement solutions. To this end, Nigeria established the National REDD+ 

Programme under the Federal Ministry of Environment. This programme aims to ensure that 

Nigeria’s climate actions align with UNFCCC guidelines by focusing on creating a national 

strategy or action plan that addresses drivers of deforestation and forest degradation, land tenure 

issues, forest governance, gender considerations, and safeguards (FREL, 2019). By implementing 

these measures, Nigeria seeks to enhance forest conservation efforts, bolster ecosystem resilience, 

and contribute to global climate goals while fostering sustainable development practices. The 

http://www.ilternet.edu/
http://www.teamnetwork.org/
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programme also serves as a framework for coordinating national and international efforts to 

combat climate change impacts effectively. 
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CHAPTER THREE 

3.0    RESEARCH METHODOLOGY 

3.1 Data Types and Sources 

This study utilised both primary and secondary data sources. The following categories of datasets 

were utilised: land use and land cover input data, climate data, topographical data, soil information, 

building footprints and distances, and field surveys (Table 3.1). Prior to the data collection and 

analysis, a reconnaissance was carried out to familiarise the researcher and his assistants with the 

terrain of the study locations. During this field survey, a global positioning system (GPS) device 

was used to locate and capture the locations of the land use and land cover classes for satellite 

imagery classification.  

3.1.1 Land use and land cover input dataset 

Freely available Landsat observations with 30 m spatial resolution were used as the principal data 

for this study (Zhu et al., 2019). Collection 1 Tier 1 imagery scenes, were derived from Landsat 5 

Thematic Mapper (TM) for 1986, Landsat 7 Enhanced Thematic Mapper Plus (ETM+) for 2002, 

and Landsat 8 Operational Land Imager (OLI) for 2014 and 2022 (Table 3.2). These time intervals 

provide the most reliable images available, enabling a sequential representation of land use and 

land cover across four different periods in the study areas. The data at this processing stage is of 

high quality, having been georegistered and intercalibrated across the Landsat sensors, making it 

appropriate for time series analysis (Awty-Carroll et al., 2019). December images, representing 

data from the dry season, were utilised due to their superior quality and minimal cloud cover 

throughout the year. The December image collection was streamlined by averaging the values of 

each pixel across all corresponding bands in the stack.



62 
 

Table 3.1 Data Types and Sources 

Data Type Data Layer Source Resolution Period 

Land use and land 

cover 

Landsat imageries  Google Earth Engine (GEE) data provided 

by the United States Geological Survey 

(USGS) 

30 m 1986–

2022 

Climate  Historical precipitation, minimum and 

maximum temperature, and potential 

evapotranspiration 

Climate Engine 5 km – 

25km   

1981–

2022 

Topography (elevation 

and slope) 

Shuttle Radar Topography Mission - 

Digital Elevation Model (SRTM 

DEM) 

GEE data provided by the United States 

Geological Survey (USGS) 

30 m - 

Soil Soil hydrological groups United States Department of Agriculture 

(USDA) National Resources Conservation 

Service (NRCS) 

250 m - 

Footprints Distances from roads and water bodies Open Street Map -  

Drivers of LULC 

changes and ecosystem 

regulating services 

perception 

Questionnaire survey Field survey Urban 

households/ 

inhabitants 

2023 
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Table 3.2 Description of Remote Sensing Data Deployed in Google Earth Engine (GEE) 

Image Sensor Period Collection in GEE Available 

scenes 

Landsat 5 Thematic Mapper 

(TM) 

1986 LANDSAT/LT05/C02/T1_L2 2 

Landsat 7 Enhanced Thematic 

Mapper Plus (ETM+) 

2002 LANDSAT/LE07/C02/T1_L2 2 

Landsat 8 Operational Land 

Imager (OLI) 

2014 LANDSAT/LC08/C02/T1_L2 2 

Landsat 8 Operational Land 

Imager (OLI) 

2022 LANDSAT/LC08/C02/T1_L2 2 

DEM SRTM version 3  USGS/SRTMGL1_003 1 

 

The Shuttle Radar Topography Mission - Digital Elevation Model (SRTM DEM version 3) with a 

30 m spatial resolution, provided by the USGS (2024), was utilised within Google Earth Engine 

(GEE). All images were projected using the Universal Transverse Mercator, Zone 31, Datum 

WGS84 projection. Table 3.2 gives an overview of the remote sensing data used in this study. 

3.1.2 Climate dataset 

Spatially average rainfall, minimum temperature, maximum temperature, and potential 

evapotranspiration datasets for Akure, Owerri, Makurdi and Minna were derived from specific 

databases in the climate engine archive (https://app.climateengine.org/climateEngine). Rainfall 

time series were acquired from the Climate Hazards Group InfraRed Precipitation with Station 

data (CHIRPS), a quasi-global rainfall database (Funk et al., 2015) in the climate engine platform. 

CHIRPS integrates 4.8 km resolution infrared imagery within real-time meteorological 

observation from ground stations to create a gridded rainfall dataset spanning from 1981 till the 

https://app.climateengine.org/climateEngine
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present. This is useful for monitoring rainfall trends and drought patterns in data-scarce and 

inaccessible regions (Funk et al., 2015).  Minimum, temperature, maximum temperature and 

potential evapotranspiration datasets were obtained from TerraClimate, a 4 km global gridded 

dataset of meteorological and water balance variables, existing monthly from 1958 till the present. 

TerraClimate incorporates spatial climatology from WorldClim with temporal information from 

the University of East Anglia Climate Research Unit gridded time series (CRU TS version 4) 

(Abatzoglou et al., 2018).  

3.1.3 Topographical data 

Topographical variables (slope and elevation) were obtained for the modelling of stormwater 

retention, and the simulation of future LULC changes. These variables were obtained from the 

Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) at 30 m spatial 

resolution in the GEE platform by writing appropriate Java scripts. However, SRTM DEM is a 

product of the USGS (https://earthexplorer.usgs.gov/). 

3.1.4 Soil data 

Soil hydrological maps for the four cities were obtained for modelling stormwater retention. Soil 

hydrologic groups categorise soils based on their runoff potential, with four classifications: A, B, 

C, and D. Group A soils have the lowest runoff potential, while Group D soils have the highest. 

Soil data for this study was sourced from the United States Department of Agriculture (USDA) 

National Resources Conservation Service (NRCS). 

(https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/geo/). 

 

 

https://earthexplorer.usgs.gov/
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/geo/
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3.1.5 Urban footprint and distances 

Information such as distances to roads and water bodies were obtained from open-source data, 

specifically Open Street Map (https://www.openstreetmap.org). These distances were computed 

using vector data of the features in conjunction with the Euclidean distance algorithm in ArcGIS. 

3.2 Assessment of Landscape Structure (Objective 1) 

This section presents the methods required to achieve the first objective of this study. This 

objective seeks to assess the spatial and temporal changes in urban landscape composition, 

configuration and connectivity between 1986 and 2022 in the Rainforest and Guinea savanna 

ecoregions. LULC change analysis is an important method of measuring environmental 

sustainability, ecological quality, and uncontrolled development at various spatial and temporal 

scales (Kafy et al., 2021). Broadly, two stages were involved in achieving this objective: land use 

and land cover assessment (satellite image preprocessing, image classification, and post-

classification) and quantification and statistical analysis of the landscape structure. The workflow 

pattern for the methodology adopted in this study is presented in Figure 3.1. Image acquisition, 

image preprocessing and image processing operations were performed on the Google Earth Engine 

(GEE) platform (https://earthengine.google.org). LULC classification was performed using GEE. 

Accuracy assessment and landscape conversion analysis were conducted on the GEE platform and 

ArcGIS environment, respectively. Land use and land cover (LULC) raster layers were deployed 

to the FRAGSTAT software to calculate landscape structural metrics associated with landscape 

composition, configuration, connectivity, and aggregation. 

https://www.openstreetmap.org/
https://earthengine.google.org/
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Figure 3.1 Flow Chart of Landscape Structure Assessment 

3.2.1 Land use and land cover assessment 

3.2.1.1   Image preprocessing 

Cloud-free datasets for the periods 1986, 2002, 2014 and 2022 were obtained using Fmask 

(Function of mask) as an object-based algorithm that was adopted to carefully choose Landsat 

scenes, from single dates, to generate clear observations of images that are cloud- and cloud-

shadow-free (Zhu and Woodcock, 2012). The near-infrared band possesses the greatest spectral 

separability to differentiate among the various LULC classes (Zurqani et al., 2019). The red band 

is a vital feature for delimiting vegetated and non-vegetated surfaces based on the reflectance of 

chlorophyll. To improve the identification of vegetation, built-up areas, and water surfaces, three 

indices were computed for each image using at-sensor reflectance values. These indices were then 

stacked for subsequent classification. These indices are the Normalised Difference Vegetation 

Index (NDVI), Normalised Difference Built-up Index (NDBI), and Modified Normalised 

Difference Water Index (MNDWI) (Xu, 2008; Zurqani et al., 2019; Ettehadi et al., 2019). In 
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Equations 3.1–3.3, Red, Green, Blue, NIR and SWIR are the spectral bands and thermal of the 

Landsat images.  

     𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝑅𝑒𝑑)
               (3.1) 

𝑁𝐷𝐵𝐼 =
(𝑆𝑊𝐼𝑅−𝑁𝐼𝑅)

(𝑆𝑊𝐼𝑅+𝑁𝐼𝑅)
         (3.2) 

𝑀𝑁𝐷𝑊𝐼 =
(𝐺𝑟𝑒𝑒𝑛−𝑆𝑊𝐼𝑅)

(𝑆𝑊𝐼𝑅+𝑆𝑊𝐼𝑅)
     (3.3) 

3.2.1.2   Image classification and post-classification 

The supervised classification method was adopted for the classification of the Landsat images into 

LULC classes. This involves the use of a random forest (RF) machine learning classifier as 

implemented in the GEE platform (Teluguntla, et al., 2018). RF is an ensemble of classification 

and regression trees (CART) built from samples randomly selected from the entire sample set for 

each tree and feature sets randomly drawn from the entire feature set in each node of the tree, 

however, modifiable in these and further settings of CART (Breiman, 2001). The RF classifier has 

been reported to offer considerable efficiency in classification accuracy compared to other 

machine learning classifiers such as decision tree classifiers, linear discriminate analysis, binary 

hierarchical classifier, and artificial neural network classifier (Belgiu and Drăguţ, 2016; Wahap 

and Shafri, 2020). The highest RF classification accuracy returned from test-runs with 500 trees 

on bands 1, 2, 3, 4, 5, and 7 (TM and ETM+) and bands 2, 3, 4, 5, 6, and 7 (OLI) as well as the 

NDVI, NDBI and MNDWI layers of the pre-processed images to generate the LULC pattern. The 

composite generated after normalisation was integrated with elevation data from the SRTM DEM 

to enhance classification.  
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Based on prior physiographical and local knowledge of the regions and visual interpretation using 

the historical function of Google Earth, five notable LULC classes were identified (Table 3.3). 

Reference datasets for these LULC classes were sourced from ground truth points, which were 

generated using Google Earth images from the relevant years, along with expert knowledge.  

Table 3.3 Description of the Identified Land Use and Land Cover Classes 

LULC Class Description 

Vegetation Continuous cover of forest and/or grasses, protected vegetated areas, 

plantations, mixed forest lands, and gallery and riparian vegetation. 

Agricultural land Cultivated and uncultivated agricultural areas, including farmlands, crop 

fields (such as fallow plots), and horticultural zones. 

Built-up areas Residential areas, industrial zones, commercial and service sectors, 

socioeconomic infrastructure, various urban areas including mixed-use 

zones, transportation networks, roads, and airports. 

Water bodies Rivers, lakes, ponds, reservoirs, wetlands, swamps, and permanent open 

water. 

Bare land Exposed soils, quarry sites, rock outcrops, landfill sites, and active 

excavation areas. 

Adapted from Munthali et al. (2019) 

 

The collected training samples were split into an 80% portion and a 20% portion for validation. 

The classifier was trained using the training data (80%) while the trained classifier was applied to 

the validation data (20%) (Wahap and Shafri, 2020). Subsequently, an accuracy assessment was 

conducted by deriving the user accuracy, producer accuracy, overall accuracy and the kappa 

coefficient. Visualization and area extent calculation of individual LULC classes were performed 

in the ArcGIS environment. The proportion of landscape conversion between 1986 and 2022 was 

determined using the intersect method of the ArcGIS geoprocessing toolbox.  
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3.2.2 Quantification and statistical analysis of the landscape structure 

The output raster layers of the image classification were used to derive the metrics of the landscape 

structure (Table 3.4). Landscape metrics are quantitative indicators that capture structural patterns 

related to a landscape composition, configuration, and connectivity (Li et al., 2021). These metrics 

are grounded in information theory and fractal geometry principles (Herold et al., 2002). Metrics 

for the years 1986, 2002, 2014, and 2022 were derived using FRAGSTATS 4.2 (McGarigal et al., 

2023). FRAGSTATS is a standalone software designed for analysing spatial patterns and assessing 

characteristics such as configuration, composition, connectivity, and aggregation. It measures 

spatial heterogeneity through various statistics that describe area, extent, and perimeter (or edge) 

at different levels, including patch, class, and landscape. In this study, landscape structure was 

quantified at two spatial scales: the class (patch type) level and the overall landscape scale (Table 

3.4). 
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Table 3.4 Description of Adopted Landscape Metrics 

Metric Description Scale 

Patch density 

(PD) 

PD is a measure of landscape heterogeneity, representing the number of patches per unit area. Class 

Landscape 

Largest patch 

index (LPI) 

LPI is a basic metric of dominance that assesses the proportion of the largest patch area relative to the 

total area of a given patch type (LULC class) in the landscape. A decrease in LPI can signal rising 

fragmentation. 

Class 

Edge density 

(ED) 

ED represents the total perimeter of all edge segments, expressed as a ratio of the entire class area. It 

increases as fragmentation within the landscape intensifies. 

Class 

Shape index 

(SHAPE) 

The shape index (SHAPE) is a standardised measure for assessing the size of a focal class in terms of 

complexity. Increasing values of SHAPE from unity suggest an increasing deviation of the focal class 

from the square patch towards being irregular. 

Class 

Landscape shape 

index (LSI) 

LSI is a standardised measure for assessing the size of a patch type or an entire landscape in terms of 

complexity. 

Landscape 

Euclidean 

nearest-neighbour 

distance (ENN) 

ENN is often used to measure the degree of patch type (class) isolation and invariably assess the extent 

of fragmentation and lack of connectivity. The ENN approaches zero as the distance to the nearest 

neighbour decreases. 

Class 

Aggregation 

index (AI) 

AI is calculated from the adjacency matrix, which shows how often different pairs of focal classes are 

adjacent on the landscape. AI is zero when the focal class is completely fragmented, but its value rises 

as the focal class becomes more aggregated, reaching 100 when the focal class is fully consolidated into 

a single, continuous patch. 

Class 

Contagion index 

(CONTAG) 

CONTAG quantifies the extent of aggregation and compactness within a landscape. Its value 

approaches zero when patch types (classes) are highly fragmented and dispersed and moves towards 

100 when all patch types are well-clustered or when the landscape is composed of a single patch. 

Landscape 

Shannon’s 

diversity index 

(SHDI)  

SHDI is a widely used metric for assessing diversity. It rises as the variety of patch types grows and/or 

when the distribution of area among these patch types becomes more balanced. 

Landscape 

Adapted from McGarigal et al. (2023) 
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Non-parametric tests were employed in this study because the datasets do not conform with the 

assumptions of parametric statistics (Kaur and Kumar, 2015). At the class level, a bivariate 

Spearman rank correlation analysis was used to examine the degree of association between the 

derived landscape metrics and the spatial extent of landscape (LULC) classes. At the landscape 

scale, the Kruskal-Wallis test (Ostertagova et al., 2014) was used to examine the differences in 

landscape metrics among the four urban landscapes. Subsequently, post hoc analysis using Dunn’s 

test (Dinno, 2015) was employed to assess the pairwise differences in landscape metrics between 

cities and ecoregions. Bonferroni correction was applied to address the problem of inflated Type I 

error rates by controlling familywise error rates during multiple comparisons (Hollestein et al., 

2021). The significance of these tests was established at a 95% confidence level. All graphical 

illustrations were performed in the R programming environment using the “ggplot2” package. 

3.3 Modelling of Ecosystem Regulating Services (Objective 2) 

This section addresses the second objective of this study. This objective seeks to model the spatial 

and temporal variability of specific ecosystem regulating services (carbon storage and 

sequestration, heat mitigation, and stormwater retention) in the four cities between 2002 and 2022. 

The schematic workflow for the methodology of this objective is presented in Figure 3.2. The 

LULC layers were integrated with biophysical and meteorological information on the InVEST 

platform to generate the spatiotemporal characteristics of ecosystem regulating services (carbon 

storage and sequestration, heat mitigation, and stormwater retention). 
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Figure 3.2 Schematic Illustration of the Methodological Workflow for Ecosystem Regulating 

Services Modelling 

Subsequently, the study locations were delineated into smaller spatial units for an adequate 

description of spatial changes using the direction-distance gradient method (Chen et al., 2021) in 

the ArcGIS environment. A multiple-ring buffer zone at 5 km intervals from the centre of the cities 

to the outermost perimeter was created and superimposed by a 12-compass rose system (Statuto et 

al., 2016; Lin and Wu, 2019). The spatial relationship between NDVI change and changes in ERS 

was assessed using the local and adjusted R square values of the geographically weighted 

regression (GWR) model (Punzo et al., 2022).  

3.3.1 InVEST models 

InVEST is a data and modelling platform that features spatially explicit biophysical and 

socioeconomic models, enabling the measurement and mapping of the impact of various human 

activities on urban ecosystem services. Developed by the Natural Capital Project at Stanford 
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University, InVEST is an open-source tool available for free 

(https://naturalcapitalproject.stanford.edu). Both InVEST and Urban InVEST are extensively used 

in areas such as urban cooling, pollination, urban flood risk reduction, climate change mitigation, 

coastal hazard management, habitat quality assessment, habitat risk evaluation, and recreational 

planning (Sharp et al., 2020). 

3.3.2 Carbon storage and sequestration model implementation  

The assessment of carbon storage and sequestration was carried out using InVEST workbench 

3.14, which requires a Land Use and Land Cover (LULC) raster layer for a specific period along 

with biophysical data, primarily carbon pools associated with each LULC type (Tallis et al., 2013; 

Adelisardou et al., 2021). These carbon pools include above-ground carbon density, below-ground 

carbon density, soil organic carbon density, and dead organic carbon density (Tallis et al., 2013). 

The carbon storage and sequestration model within the InVEST workbench utilises a simplified 

carbon cycle to compute both static carbon storage and the variations in storage across individual 

grid cells based on their LULC type. The model produces an output of carbon density and storage 

which were estimated following Equations 3.4 and 3.5 (Aalde et al., 2006; Adelisardou et al., 

2021). 

𝐶𝑖 = 𝐶𝑖_𝑎𝑏𝑜𝑣𝑒 + 𝐶𝑖_𝑏𝑒𝑙𝑜𝑤 + 𝐶𝑖_𝑠𝑜𝑖𝑙 + 𝐶𝑖_𝑑𝑒𝑎𝑑   (3.4) 

𝐶𝑡𝑜𝑡𝑎𝑙 = ∑ (𝐶𝑖 × 𝑆𝑖)
𝑛
𝑖=1      (3.5) 

where i represents a specific LULC type; Ci is the carbon density of the i-th LULC class; Ci_above, 

Ci-below, Ci_soil and Ci_dead are the above-ground, below-ground, soil organic, and dead organic 

carbon densities of the i-th LULC class, respectively. Ctotal, which is measured in metric tons per 

https://naturalcapitalproject.stanford.edu/
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year, is the estimated carbon storage in the study region, n represents the number of LULC types 

in the study region, and Si represents the area of the ith type of area, measured in hectares).  

Subsequently, carbon sequestration (“S”) for the entire study region can be derived from Equation 

6, with CT2 and CT2 representing the static carbon storage in the initial (T1) and later (T2) years 

(Equation 3.6) (Aalde et al., 2006; Adelisardou et al., 2021). The required biophysical data (carbon 

pools) for the study regions were acquired from the literature and cloud-computing sources (Table 

3.5).  

𝑆 = 𝐶𝑇2 − 𝐶𝑇1      (3.6) 

 

Table 3.5 Biophysical Table of the Carbon Pools across LULC Types  

LULC class Above-Ground 

Carbon Density 

(FAO 2020a; 

Spawn and 

Gibbs, 2020) 

Below-Ground 

Carbon Density 

(FAO 2020a; 

Spawn and 

Gibbs, 2020) 

Soil Organic 

Carbon Density 

(Jibrin et al., 

2018; 

Olorunfemi et 

al., 2020b; 

Hengl et al., 

2021);  

Dead Organic 

Carbon Density 

(FREL, 2019; 

FAO, 2020a) 

RF GS RF GS RF GS RF GS 

Built-up 

areas 

0.95 7.04 1.79 1.94 5.00 5.00 0.50 0.50 

Agricultural 

land 

35.47 11.57 8.77 2.98 20.81 10.00 1.20 1.20 

Vegetation 110.23 76.06 27.56 17.64 35.10 15.00 2.07 1.60 

Bare land 16.54 0.90 4.41 0.96 5.00 5.00 0.50 0.50 

Water bodies 0 0 0 0 0 0 0 0 

RF = Rainforest ecological region (Akure and Owerri); GS = Guinea savanna ecological region 

(Makurdi and Minna).  
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3.3.3 Heat mitigation model implementation 

The urban cooling model within the InVEST workbench was utilised to evaluate the cooling 

capacity and heat mitigation effects in the study areas. This model generates an index of heat 

mitigation by considering factors such as evapotranspiration, shade, albedo, and proximity to 

cooling spaces like parks (Table 3.6). The index is then used to estimate the temperature reduction 

effect provided by vegetation cover (Sharp et al., 2020). Although this study did not explore it, the 

model can also quantify the value of heat mitigation services through energy consumption or work 

productivity methods, or a combination of both, depending on the available input data. 

Table 3.6 Biophysical Table for the Heat Mitigation Modelling 

LULC Type Shade 

(Kadaverugu 

et al., 2021) 

Kc (Allen et 

al., 1998; 

(Kadaverugu 

et al., 2021) 

Albedo 

(Stewart and 

Oke, 2012; 

Balogun and 

Daramola, 

2019) 

Green Space  

Built-up 0.2 0.1 0.15 0 

Agricultural land 0.3 1.22 0.2 1 

Vegetation 0.9 1.1 0.2 1 

Bare land 0 0.1 0.27 0 

Water 0 1.05 0.1 0 

 

3.3.3.1   Urban cooling capacity 

The model first computes the cooling capacity (CC) index for individual pixels based on 

evapotranspiration, shade, and albedo, using the methods outlined by Zardo et al. (2017) and 

Kunapo et al. (2018), where albedo is recognised as a key factor for heat reduction. The shade 

factor ('shade') represents the proportion of tree canopy (≥2m in height) associated with each 

LULC type. The evapotranspiration index (ETI) is a normalised value of potential 
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evapotranspiration, encompassing evapotranspiration and evaporation from vegetation, soil, and 

other non-vegetated surfaces. ETI is determined as shown in Equation 7, using the crop coefficient 

(Kc) for each pixel and the maximum value (ETmax) of evapotranspiration (ETo) raster obtained 

from FAO (2020b) for the study area (Equation 3.7). The albedo factor, which quantifies the 

proportion of solar radiation reflected by a LULC type, ranges from 0 to 1 (Phelan et al., 2015). 

𝐸𝑇𝐼 =
𝐾𝑐.𝐸𝑇𝑜

𝐸𝑇𝑚𝑎𝑥
     (3.7) 

The model integrates the three factors to derive the cooling capacity (CC) index (Equation 8): 

𝐶𝐶𝑖 = 0.6(𝑠ℎ𝑎𝑑𝑒) + 0.2(𝑎𝑙𝑏𝑒𝑑𝑜) + 0.2(𝐸𝑇𝐼)   (3.8) 

where, 0.6, 0.2 and 0.2 are recommended weighting based on empirical data demonstrating the 

greater impact of shading relative to evapotranspiration (Zardo et al., 2017; Sharp et al., 2020).  

3.3.3.2   Heat mitigation index 

The model considers the cooling impact of expansive green areas (>2 hectares) on the adjacent 

surroundings by computing the urban heat mitigation index (HMI). If a pixel is unaffected by any 

large green spaces, the HMI equals the cooling capacity (CC); otherwise, it computes a distance-

weighted average of the CC values from the large green spaces and the reference pixel. This 

process involves estimating the area of green spaces within a specified search distance (dcool) 

around each pixel (GAi) and the cooling capacity (CCparki) provided by each green space. 

(Equations 3.9 and 3.10):  

𝐺𝐴𝑖 = 𝑐𝑒𝑙𝑙𝑎𝑟𝑒𝑎 × ∑ 𝑔𝑗𝑗∈𝑑 𝑟𝑎𝑑𝑖𝑢𝑠 𝑓𝑟𝑜𝑚 𝑖     (3.9) 

𝐶𝐶𝑝𝑎𝑟𝑘𝑖 = ∑ 𝑔𝑗 . 𝐶𝐶𝑗 . 𝑒(
−𝑑(𝑖,𝑗)

𝑑𝑐𝑜𝑜𝑙
𝑗∈𝑑 𝑟𝑎𝑑𝑖𝑢𝑠 𝑓𝑟𝑜𝑚 𝑖 )             (3.10) 
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where, cellarea is the area if a pixel (ha); gj is 1 if the pixel j is green space or 0 if it is not; d(i,j) is 

the colling distance between pixels i and j; dcool is the distance over which a green space has a 

cooling effect; and CCparki is the distance weighted average of the CC values attributable to green 

spaces.  

𝐻𝑀𝑖 = {
𝐶𝐶𝑖     𝑖𝑓  𝐶𝐶𝑝𝑎𝑟𝑘𝑖𝑜𝑟 𝐺𝐴𝑖 < 2ℎ𝑎

𝐶𝐶𝑝𝑎𝑟𝑘𝑖                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

}             (3.11) 

3.3.3.3   Air temperature estimation 

The model requires city-scale urban heat island magnitude (UHImax) to compute heat reduction 

throughout the study region. In this research, the average annual Urban Heat Island (UHI) values 

for the four cities were sourced from the Global Surface UHI Explorer, a tool developed by Yale 

University (Chakraborty and Lee, 2019). 

Air temperature without air mixing, Tairnomix is computed for each pixel as (Equation 3.12):  

𝑇𝑎𝑖𝑟𝑛𝑜𝑚𝑖𝑥𝑖 = 𝑇𝑎𝑖𝑟,𝑟𝑒𝑓 + (1 − 𝐻𝑀𝑖). 𝑈𝐻𝐼𝑚𝑎𝑥   (3.12) 

where Tair,ref is the rural reference temperature and UHImax is the maximum magnitude of the UHI 

effect for the city.  

The spatial average of the temperature values takes account of air mixing. Actual air temperature 

(with mixing), Tair, is calculated from Tairnomix
 using a Gaussian function (Sharp et al., 2020). 

Average temperature and the temperature anomaly are then derived (𝑇𝑎𝑖𝑟,𝑖 − 𝑇𝑎𝑖𝑟,𝑟𝑒𝑓). 

3.3.4 Stormwater retention modelling 

The stormwater retention model of the InVEST workbench provides information on ecosystem 

hydrological services related to stormwater management: runoff and retention quality and quantity, 
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and groundwater recharge (Sharp et al., 2020). In this study, the model was adopted to estimate 

the annual rainfall-runoff behaviour of the cities in terms of stormwater runoff volume, and 

stormwater retention quantity. The model requires LULC raster layer for a specific period and a 

biophysical table containing the values of the values of the annual runoff coefficients (RC), and 

optionally, the percolation ratios (PE), for individual LULC types (Tables 3.7 and 3.8). These 

coefficients are fundamentally a LULC and soil properties in the study region.  

For the individual LULC type m, the stormwater retention coefficient Rex is calculated using 

Equation 3.13: 

𝑅𝐸𝑥 = 1 − 𝑅𝐶𝑚     (3.13) 

Table 3.7 Biophysical Table of Runoff Coefficient across LULC Types and Hydrologic Soil 

Groups 

LULC RC_A RC_B RC_C RC_D 

Built-up areas 0.51 0.53 0.56 0.59 

Agricultural land 0.18 0.21 0.25 0.29 

Vegetation 0.22 0.28 0.35 0.40 

Bare land 0.37 0.45 0.6 0.70 

Water bodies 0 0 0 0 

Adapted from Team (2004) and Links (2018) 

Table 3.8 The Hydrologic Soil Group Classification Scheme 

HSG Description Soil Texture 

A Low runoff potential (>90% sand and <10% clay) Sand 

B Moderately low runoff potential (50-90% sand and 10-20% 

clay) 

Sandy loam, Loamy 

sand 

C moderately high runoff potential (<50% sand and 20-40% 

clay) 

  

Clay loam, Silty clay 

loam, Sandy clay 

loam, Loam, Silty 

loam, Silt 

D High runoff potential (<50% sand and >40% clay) Clay, Silty clay, 

Sandy clay 

Adapted from Ross et al. (2018) and Chow et al. (1988) 
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The model designates the stormwater retention coefficients (Rei) to individual grid cells i, 

according to the LULC and hydrological soil group raster layers (Equation 3.14). 

𝑉𝑅𝐸𝑖 = 0.001(𝑃𝑖) × 𝑅𝐸𝑖(𝑝𝑖𝑥𝑒𝑙. 𝑎𝑟𝑒𝑎)   (3.14) 

where Pi is the annual precipitation (mm/yr), and pixel.area is the area of the grid cell (m2). 

3.4 Investigation of the Characteristics and Drivers of the Changes in Urban Landscape 

and Ecosystem Regulating Services (Objective 3) 

This section addresses the third objective of this study which involves using a community-based 

approach to evaluate the characteristics and drivers of the changes in urban landscape and 

ecosystem regulating services in the Rainforest and Guinea savanna ecoregions of Nigeria. It 

describes details of the socioeconomic data sampling, data collection and data analysis. 

3.4.1 Data sampling 

The characteristics and drivers of landscape and ecosystem services dynamics in the last five years 

were explored from the perspective of local inhabitants using a household questionnaire survey. 

The projected 2022 population data for the local governmental areas (LGAs) in these locations 

were retrieved from the city population website (https://www.citypopulation.de/en/nigeria/admin/) 

to determine the sample size. Subsequently, the sample size for each LGA was calculated using 

the formula proposed by Cochran (1963) which has been integrated into an online sample size 

calculator (https://www.calculator.net/sample-size-calculator) at a 5% error margin, 95% 

confidence level and 50% population proportion (Table 3.9).  

The questionnaire was administered to a sample of 1,552 inhabitants (Table 3.9; Appendices E – 

I). For each city, the questionnaire was evenly distributed among the political wards (or electoral 

https://www.citypopulation.de/en/nigeria/admin/
https://www.calculator.net/sample-size-calculator
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districts) of each LGA. Subsequently, a convenient sampling technique (Taherdoost, 2016) was 

used to sample households at an interval of 10 buildings apart in each political ward. Within each 

community, the questionnaire was administered to heads of households or to any available 

individuals older than 18 years and who have lived in the city for over five years (but not 

necessarily in the same community). The survey was conducted between April and July 2023. 

Although the sample size was predetermined before the field survey, the response rate was slightly 

above 100%, because samples of the questionnaire were accidentally administered to an additional 

2% above the predetermined sample size in Owerri, Makurdi and Minna. 

Table 3.9 Projected Population and Calculated Sample Size, LGA = Local Governmental 

Area 

Ecoregion Location LGA aProjected 2022 

Population 

Sample Size 

Rainforest Akure Akure North 200,900 75 

Akure South 553,400 208 

Ifedore 270,900 102 

 1,025,200 385 

Owerri Owerri Municipal 174,200 107 

Owerri North 245,100 168 

Owerri West 141,400 119 

 560,700 394 

Guinea 

savanna 

Makurdi Makurdi 433,700 386 

Minna Bosso 254,100 164 

 Chanchaga 346,700 223 

  600,800 387 

Total   2,620,400 1552 

a – City Population (2022). 

3.4.2 Data collection 

Data collection was carried out by digitally integrating the questionnaire survey into the Kobo 

toolbox application on mobile devices to foster accuracy in data collection and data integrity. A 

team of four researchers were trained and designated to perform this in each city. A structured 
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questionnaire comprising open-ended and closed questions was used to acquire information on the 

characteristics of the local communities, their perception of landscape changes, and the drivers of 

these changes at the household level (Appendix J). The questionnaire comprised three sections, 

the first of which requested information on the socioeconomic status of the urban inhabitants (such 

as age, gender, education attainment, ethnicity, occupation, type of residence, duration of 

residence, and main means of cooking). The second section explored perspectives on the 

characteristics and drivers of landscape changes as well as the implications for accessibility to 

social services. The third section investigated the status of ecosystem services in the respondents’ 

communities within the last five years. The last two sections required the respondents to provide 

ratings on either a three- or five-unit scale of “No impact” to “Very high impact” or “degrading”, 

“no change”, or “improving”. 

The questionnaire was meticulously reviewed by the supervisors and a panel of academic experts 

with extensive experience in environmental and social science research. Their thorough evaluation 

ensured the validity, clarity, and alignment of the content of the questionnaire with the study 

objective. The review process involved iterative revisions to refine the phrasing and structure of 

questions, ensuring they were appropriate for the target population.  

Cronbach’s Alpha test was used to assess the reliability of the questionnaire in the SPSS (Statistical 

Package for the Social Sciences) environment. Cronbach’s Alpha is a statistical measure used to 

evaluate the internal consistency or reliability of a set of items (questions) in a survey or test that 

are intended to measure the same construct (Tavakol and Dennick, 2011). It assesses how closely 

related the items are as a group. The questionnaire demonstrates excellent reliability, with 

Cronbach’s Alpha values of 0.899 and 0.922 (standardised), indicating strong internal consistency 

among its 63 items. All 1,552 responses were valid, with no exclusions. The mean (147.03) and 
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standard deviation (25.796) reflect a well-distributed dataset. These results confirm the 

questionnaire’s suitability for assessing the intended construct effectively. 

3.4.3 Statistical analyses 

Non-parametric statistical analyses were employed because the datasets do not conform with the 

assumptions of normality and homogeneity of variance. The data from the household survey was 

coded, processed and analysed using the Statistical Package for the Social Sciences (SPSS). 

Responses on the characteristics and drivers of landscape structure changes were summarised and 

ranked following the weighted average principle using the rank index as adopted by Munthali et 

al. (2019) (Equation 3.15): 

𝐼𝑛𝑑𝑒𝑥 =
𝑅𝑛𝐶1+𝑅𝑛−1𝐶2…+𝑅1𝐶𝑛

∑ 𝑅𝑛𝐶1+𝑅𝑛−1𝐶2…+𝑅1𝐶𝑛
    (3.15)  

where Rn = value given for the least-ranked level (for example, if the least rank is the 10th, then 

Rn = 10, Rn−1 = 9, R1 = 1); Cn = counts of the least ranked level (in the above example, the count 

of the 10th rank = C10, and the count of the 1st rank = C1). 

The Kruskal-Wallis test (Ostertagova et al., 2014) was used to investigate whether there is a 

significant variation in dominant land use and land cover types across cities while Dunn’s test 

(Dinno, 2015) was used to identify the pairwise differences within and between ecoregions as 

perceived by the respondents; Bonferroni correction was applied to control for multiple 

comparisons to avoid the commission of inflated Type I error (Hollestein et al., 2021). These tests 

were also applied to assess the variation in access to social services as well as the status and 

performance of ecosystem services. The multinomial logistic regression model (Hedeker, 2003; 

Bekere et al. 2023) was applied to assess the relationship between urban residents’ concerns for 

landscape changes and their socioeconomic characteristics in individual cities; given the dependent 
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variable Y = the level of land use concern of respondents, the independent variables are defined as 

X1 = age, X2 = gender, X3 = ethnicity, X4 = education attainment, X5 = main occupation, X6 = 

income, X7 = household size, X8 = duration of residence, X9 = residential building type, and X10 = 

means of cooking (Equation 3.16). The socioeconomic profiles of the respondents in Akure, 

Owerri, Makurdi, and Minna are outlined in Tables S1 and S2. The multinomial logistic regression 

model was also used to evaluate the perceived effect of anthropogenic pressures such as population 

growth/in-migration and economic activities as well as climate variability/change on the well-

being of natural landscapes such as forests and grasslands. The input variables of the model are 

defined as Y = status of natural landscape, X1 = Population increase and in-migration, X2 = 

economic activities, and X3 = climate variability/change (Equation 3.16). The logistic regression 

model often determines the probability of the effects of the independent variables on the dependent 

variables (Lesschen et al., 2005) (Equation 3.16). 

𝐿𝑜𝑔𝑖𝑡(𝑌) = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + ⋯ + 𝛽𝑛𝑋𝑛  (3.16) 

where Y = dependent variable indicating the likelihood that Y = 1, α = the intercept, β1 . . . βn = 

coefficients of associated independent variables, and X1 . . . Xn = independent variables. 

The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) were used to 

select the best model for the regression analysis, while the strength of the relationship between the 

dependent variable and the independent variables was evaluated using the Nagelkerke R2 

(Nagelkerke, 1991). Nagelkerke R2 is an adjusted R2 which measures the proportion of the overall 

variance of the dependent variable that can be explained by independent variables in the logistic 

regression model (Seo et al., 2008). The significance of these tests was established at a 95% 

confidence level. The text mining and word cloud packages (Welbers et al., 2017) in the R 

programming environment were used for text analysis to provide a visual comparison of land use 
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related to the socio-environmental challenges experienced by the respondents. Graphical 

illustrations were carried out using the “ggplot2” package in the R programming environment, 

while the trend of land use change was depicted using the Sankey diagram generator 

(http://sankey-diagram-generator.acquireprocure.com/).  

3.5 Assessing the Trend and Pattern of Climatic (Precipitation and Temperature) 

Changes (Objective 4) 

This section addresses the fourth research objective, which aims to investigate the variability of 

precipitation and temperature (both minimum and maximum) in the cities within the ecoregions 

from 1981 to 2022. The workflow for the data processing operations is illustrated in Figure 3.3. 

Descriptive statistics, including annual mean, minimum, maximum, and standard deviation values, 

were computed for each city. The coefficient of variation (CV), representing the percentage ratio 

of the standard deviation (σ) to the mean (x̄), was calculated as shown in Equation 3.17:  

𝐶𝑉 =  
𝜎

x̄
× 100     (3.17) 

Standardised precipitation anomaly was calculated using the statistical Z-score Index (Equation 

3.18), due to its potential to illustrate the departure of rainfall from the long-term mean (Hadgu et 

al., 2013). It allows the recognition of dry and wet periods and their trends. Positive (blue) and 

negative (red) values of the index depict above-average (wet period) and below-average (dry 

period) precipitation, respectively (Bhuiyan et al., 2006; Obateru et al., 2023a). 

             𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 𝑍 − 𝑆𝑐𝑜𝑟𝑒 𝐼𝑛𝑑𝑒𝑥 =
(𝑥−𝜇)

𝜎
   (3.18) 

The Mann-Kendall trend test was employed to analyse the rainfall and temperature trends, while 

Sen's slope estimator was used to quantify the magnitude of these trends (Figure 3.3). The Mann-

http://sankey-diagram-generator.acquireprocure.com/
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Kendall test is a non-parametric, rank-based method widely applied in climatological time series 

analysis due to its robustness in handling non-normally distributed datasets (Pan et al., 2018). 

Trends identified by the test can be upward (increasing), downward (decreasing), or flat (no trend). 

Sen’s slope estimator, another non-parametric test, uses a linear model to estimate the magnitude 

of the trends in the climatological time series (Sen, 1968; Obateru et al., 2023a). A positive slope 

value indicates an increasing trend, while a negative slope reflects a decreasing trend over time. 

series.

 

Figure 3.3 Workflow of the Data Processing Operations for Climate Analysis 

Prior to conducting the trend analysis, a serial correlation test was applied to the climatological 

data. Serial correlation increases the likelihood of identifying statistically significant trends, which 

can lead to an incorrect rejection of valid null hypotheses that assume no trend (Yue et al., 2002). 

Alashan (2020) emphasised that serial correlation must be addressed before applying the Mann-

Kendall trend test to climatological datasets. Therefore, the serial correlation was eliminated using 
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the modified Mann-Kendall (MMK) approach, which incorporates techniques such as 

prewhitening, variance correction, or overwhitening (Blain, 2013; Alashan, 2020). 

The serial correlation test was conducted using the "ggacf" function from the "bayesforecaste" 

package in R. For locations exhibiting serial correlation, the bias-corrected prewhitening (BCP) 

method of the MMK test was employed (Patakamuri et al., 2020). The MMK method is linked to 

Sen’s innovative test rather than Sen’s slope estimator to determine the trend magnitude. 

3.6 Future Dynamics of Landscape Structure and Ecosystem Regulating Services under 

Climatic Scenarios (Objective 5) 

In this section, methods required by the fifth objective are presented. This objective seeks to model 

the impact of future dynamics of land use and land cover pattern and landscape structure on the 

resilience and sustainability of ecosystem regulating services under specific climatic scenarios. 

This section has three main parts:  

a. the simulation of future LULC patterns using the cellular automata–artificial neural 

network (CA-ANN) model;  

b. the evaluation of future landscape structure; and 

c. the modelling of the future pattern of ecosystem regulating services under specific climatic 

conditions. 

3.6.1 Future land use and land cover simulation 

Future landscape changes can be effectively predicted using simulation techniques to inform 

landscape management strategies (Kafy et al., 2021). LULC modelling methods help identify 

potential future conversions by considering historical LULC trends, population growth, 

topographical features, and other factors (Kafy et al., 2021). These simulation models utilise 
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probabilistic methods to predict future changes (Kafy et al., 2021). Numerous studies have 

employed different models to project future LULC dynamics, but the Markov Chain (MC) model 

is among the most widely used techniques (Mishra and Rai, 2016). This stochastic approach relies 

on large-scale temporal datasets from past periods and is particularly suited for short-term 

projections with unidirectional transitions (Rendana et al., 2015). 

The MC model is often integrated with other stochastic models, such as the Cellular Automata 

(CA) model, to enhance the accuracy and ease of simulating LULC changes. The combination of 

the stochastic MC technique with the CA model allows for more complex, multi-directional LULC 

change simulations (Ozturk, 2015). Various software platforms, such as CA-MC, Land Change 

Modeler, CLUE-S, DINAMICA, and MOLUSCE (Modules for Land Use Change Evaluation), are 

now available for predicting LULC dynamics. In this research, the CA-ANN simulation models 

were employed to project LULC changes for 2042. 

3.6.1.1    Cellular automata model  

The Cellular Automata (CA) model is a discrete spatial model with a dynamic system that relies 

on defined transition rules to link the initial state of an LULC class to its previous state and the 

states of its neighbouring classes (Munthali et al., 2019). Furthermore, CA-based models have the 

ability to represent non-linear and complex spatial processes, making them valuable for 

understanding landscape dynamics at various scales, including local, national, regional, and global 

levels (Liping et al., 2018). 

The CA model incorporates key elements that must be carefully considered to achieve optimal 

simulation results. These elements include cells, transition rules, cell size, time, and cell 

neighbourhoods (Liping et al., 2018; Munthali et al., 2019). Therefore, the spatial and temporal 
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state of neighbouring cells is significantly influenced by the state of each individual cell (Kumar 

et al., 2014). The CA model is mathematically represented as (Munthali et al., 2019): 

𝑆(𝑡, 𝑡 + 1) = 𝑓((𝑆𝑡), 𝑁)      (3.19) 

where is S the set of states of the finite cells; N is the number of neighbourhood cells; t and t + 1 

are periods; and f is the transformation rule of local space. 

3.6.1.2    Artificial neural networks 

Artificial Neural Networks (ANNs) represent a fundamental concept within artificial intelligence 

theory and were developed concurrently with Cellular Automata (CAs) (Basse et al., 2014). The 

core idea behind artificial intelligence was initially aimed at enabling machines to perform 

mathematical reasoning similar to humans (e.g., advanced robotics). A notable example of an ANN 

algorithm is the Multi-Layer Perceptron (MLP), which uses a standard back-propagation learning 

method. This algorithm was employed to formulate the model's transition rules (Basse et al., 2014). 

Standard back-propagation involves minimising the mean squared error using the gradient descent 

method, as expressed in Equation 3.20. 

𝐸𝑝 = ∑ ∑
1

2
(𝑑𝑗

𝐿 − 𝑦𝑗
𝐿)

2𝑛𝐿
𝑗=1

𝑛𝑝

𝑝=1      (3.20) 

where, dL
j and yL

j are, respectively, the desired and actual outputs for the jth neuron, np is the number 

of patterns in the training dataset, and nL is the number of output neurons. 

3.6.1.3     CA-ANN simulation models and the Modules of Land Use Change Evaluation 

(MOLUSCE) 

The Modules of Land Use Change Evaluation (MOLUSCE), a newly introduced plugin for QGIS, 

was employed for CA-ANN modelling to predict future LULC changes. MOLUSCE facilitates the 
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analysis, modelling, and simulation of LULC transformations by integrating several advanced 

algorithms, including cellular automata (CA), artificial neural networks (ANN), logistic regression 

(LR), weights of evidence (WoE), and multi-criteria evaluation (MCE) (Kafy et al., 2021). ANN 

was used within the CA-ANN framework to determine the transition probabilities of LULC 

classes, leveraging multiple output neurons to simulate various LULC changes (Zare Naghadehi 

et al., 2021).  

MOLUSCE offers a user-friendly interface with clearly defined modules and functions. The plugin 

includes several procedural steps, starting with input data processing, area change analysis, 

modelling methods, simulation, and validation. The CA model handles both static and dynamic 

aspects of LULC changes, providing enhanced prediction accuracy (Santé et al., 2010). 

For future LULC predictions using MOLUSCE, two types of input variables were considered. 

Historical LULC data from 1986, 2002, and 2022 served as dependent variables, while explanatory 

variables included slope maps, elevation maps, and distances from roads, which describe the 

physical and anthropogenic characteristics of the landscape (Kafy et al., 2021). The LULC maps 

for 1986 and 2002, along with explanatory variables and the transition matrix, were used with the 

CA-ANN technique to simulate the 2022 LULC map (Değermenci et al., 2023). The model's 

predictive accuracy was evaluated by comparing the classified 2022 LULC map with its simulated 

counterpart using the kappa verification method. The simulation involved 5000 iterations, 10 

hidden layers, a learning rate of 0.205, and a momentum of 0.1 in the ANN learning process 

(Değermenci et al., 2023). Given that the kappa values exceeded 70%, the CA-ANN model was 

used to project LULC maps for 2042. 
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3.6.2 Future landscape structure prediction 

The outcome of the CA-Markov LULC future modelling imported into the FRAGSTAT 

environment for the computation of the following landscape structure metrics at the landscape 

level as illustrated in subsection 3.2.3: Patch Density (PD), Largest Shape Index (LSI), Contagion 

Index (CONTAG), and Shannon’s Diversity Index (SHDI) (see Table 3.4) 

3.6.3 Modelling the pattern of future ecosystem regulating services 

Following the procedures in section 3.3, the simulated LULC was integrated into the InVEST 

platform to establish the resilience of the selected ecosystem services (carbon storage and 

sequestration, heat mitigation, and stormwater retention) under the future LULC scenario. The 

historical climate datasets were incorporated into this platform to assess the future trend of these 

services under the hitherto extreme climatic conditions which may likely reoccur. The results of 

the future predictions (2042) were compared with those of the current distribution (2022) to 

implicate landscape resilience and ecosystem sustainability while the degree of association 

between landscape structure metrics and the selected ecosystem regulating services was assessed 

using the Spearman rank correlation analysis. 
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CHAPTER FOUR 

4.0    RESULTS AND DISCUSSION 

4.1 Results 

4.1.1 Spatiotemporal changes in urban landscape structure in the Rainforest and Guinea 

ecological regions of Nigeria 

This section presents the results of the first objective of this study which involves an assessment 

of the spatiotemporal changes in landscape structure (composition, configuration, connectivity and 

aggregation) in cities of the Rainforest and Guinea savanna ecoregions of Nigeria. This section 

has four subsections: the land use and land cover (LULC) dynamics, the landscape structure 

dynamics, the correlation between the landscape structure and LULC classes, and the variation in 

landscape structure. 

4.1.1.1   Land use and land cover dynamics 

a.   LULC proportion and rate of change 

The built-up area in Akure increased from 2.86% (3587.25 ha) of the entire landscape in 1986 to 

7.63% in 2022, 12.68% in 2014, and 17.88% (22432.08 ha) in 2022 (Figures 4.1 and 4.2; Plate I). 

This represents an increase of 15.05% (18844.83 ha) over 36 years at an average expansion rate of 

0.42% (523.47 ha) per annum. In Owerri, the areal extent of built-up areas increased from 11.26% 

(6051.24 ha) of its entire landscape in 1986 to 13.31% in 2002, 21.04% in 2014, and 23.73% 

(12752.21 ha) in 2022; urban areas increased by 12.47% (6700.96 ha), at an annual expansion rate 

of 0.35% (186.14 ha). In Makurdi, the built-up areas increased from 7.28% (6139.89 ha) of the 

entire landscape in 1986 to 11.13% in 2002, 22.10% in 2014, and 34.02% (22477.70 ha) in 2022 
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(Figures 3 and 4). This amounts to an increase of 26.72% (20808.17 ha) at an annual expansion 

rate of 0.74% (624.38 ha). In Minna, built-up areas increased from 1.75% (2910.09 ha) in 1986 to 

7.27% in 2002, 10.86% in 2014, and 13.29% (22079.24 ha) in 2022. This represents an increase 

of 11.54% (19169.15 ha) at an annual expansion rate of 0.32% (532.48 ha). 

 

Plate I Examples of Land Uses – (a) A Mixed Cropland in Oba-Ile, Akure; (b) Vegetation 

Removal and Exposure to Soil Erosion due to Residential Building Construction in Oba-Ile, 

Akure; and (c) Soil Erosion and Poor Drainage in Sabon Gari Ward, Minna (Fieldwork, 2023). 

 

Agricultural land in Akure declined from 29.49% (37001.02 ha) of the landscape in 1986 to 

27.54% in 2002, 18.51% in 2014 but increased to 39.58% (49663.63 ha) in 2022 (Figures 4.1 and 

4.2). In Owerri, agricultural land decreased from 34.85% (18729.85 ha) in 1986 to 30.22% in 2002, 

25.36% in 2014, and 38.34% (29694.56 ha) in 2022. In Makurdi, increased from 33.33% 

(28107.96 ha) in 2002 to 38.72%, but subsequently declined over time, from 31.77% in 2014, and 

25.68% (21605.94 ha) in 2022. In Minna, agricultural land dominated the landscape transition 

from 69.79% (116125.30 ha) in 1986 to 40.37% in 2002, 47.69% in 2014, and increased drastically 

to 78.43% (130270.85 ha) in 2022 at the expense of vegetation cover. In Akure, vegetation cover 

recorded minimal change from 62.55% (78497.46 ha) of the landscape in 1986 to 58.01% in 2002. 

However, marked fluctuations occurred after this period, with an increase to 66.19%, followed by 

a sharp decrease to 40% (50607.20 ha) in 2022.  
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In Owerri, vegetation increased from 50.64% (27213.57 ha) in 1986 to 55.72% in 2002, slightly 

declined to 52.25% in 2014, and drastically declined to 37.03% (19898.53 ha) in 2022. In Makurdi, 

vegetation changed from 52.53% (44293.20 ha) to 40.34% in 2002, 36.44% in 2014, and 31.35% 

(26376.32 ha) in 2022. In Minna, vegetation cover fluctuates over time from 27.47% (45717.20 

ha) in 1986 to 14.54% in 2002, to 27.22% in 2014, and 3.21% (5324.00 ha) in 2022.  

 

b.   Landscape conversion pattern 

The transformation patterns of landscape composition between 1986 and 2022 are presented in 

Table 4.1. Each city experienced a substantial transformation of vegetation to agricultural land, 

with Akure and Makurdi witnessing the most intensive conversion from vegetation to built-up 

areas. Remarkable conversion of agricultural land to built-up areas and vegetation was observed 

in Akure, Owerri and Makurdi (Figure 4.1; Plate I). The conversion of agricultural land to 

vegetation indicated a trend suggestive of landscape restoration or instances of bush fallowing for 

soil fertility rejuvenation. 
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Figure 4.1 LULC Change in Akure, Owerri, Makurdi and Minna between 1986 and 2022 



95 
 

 

Figure 4.2 Temporal Changes in Land Use and Land Cover (LULC) between 1986 and 2022 
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Table 4.1 Landscape Conversion between 1986 and 2022 

Proportion of the Transformed 

Landscape 

Akure (125205.38 ha) Owerri (53736.39 ha) Makurdi (84130.86 ha) Minna (166103.59 ha) 

Agricultural 

land to  
 

Bare land 293.33 (0.23%) 61.82 (0.12%) 819.85 (0.97%) 2447.73 (1.47%) 

Built-up areas 9617.85 (7.68%) 4698.63 (8.74%) 12614.07 (14.99%) 7097.05 (4.27%) 

Vegetation 8985.52 (7.18%) 5364.90 (9.98%) 5771.48 (6.86%) 5016.23 (3.02%) 

Bare land to Agricultural land 1429.94 (1.14%) 436.19 (0.81%) 155.72 (0.19%) 2447.73 (1.47%) 

Built-up areas 2230.46 (1.78%) 827.48 (1.54%) 587.35 (0.70%) 843.92 (0.51%) 

Vegetation 145.20 (0.12%) 333.16 (0.62%) 645.80 (0.77%) 9.05 (0.01%) 

Water bodies 24.01 (0.02%) 47.47 (0.09%) 379.20 (0.45%) 0.07 (0.001%) 

Vegetation to  Agricultural land 29763.38 (23.77%) 10558.10 (19.65%) 11441.60 (13.60%) 38109.10 (22.94%) 

Bare land 175.91 (0.14%) 33.05 (0.06%) 2046.89 (2.43%) 1594.83 (0.96%) 

Built-up areas 6911.49 (5.52%) 2602.49 (4.84%) 11401.15 (13.55%) 584.31 (0.35%) 

Water bodies 294.98 (0.24%) 114.34 (0.21%) 215.42 (0.26%) 123.67 (0.07%) 

Water bodies 

to 

Agricultural land 267.91 (0.21%) 4.76 (0.01%) 1.61 (0.002%) 233.47 (0.14%) 

Bare land 98.69 (0.08%) 1.24 (0.002%) 498.93 (0.59%) 11.96 (0.01%) 

Built-up areas 352.70 (0.28%) 7.49 (0.01%) 164.95 (0.20%) 13.42 (0.01%) 

Vegetation 126.75 (0.10%) 13.34 (0.02%) 11.19 (0.01%) 23.02 (0.01%) 

All changes >=5% are highlighted in bold
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c.   Accuracy assessment  

The accuracy validation of the supervised classification was performed using the random forest in 

GEE (Table 4.2; Appendix A – D). The overall accuracy for the four study locations ranged 

between 86.67% and 97.30%, whereas the kappa coefficient ranged between 82.70% and 96.38%. 

The spatial and temporal changes in the urban landscapes of Rainforest (Akure and Owerri) and 

Guinea savanna (Makurdi and Minna) ecological regions between 1986 and 2022 are presented in 

Figures 4.1 and 4.2.  

Table 4.2 Accuracy Assessment Results of LULC Classification 

Location Year Validation Overall 

Accuracy (%) 

Kappa Coefficient 

(%) 

Akure 1986 97.06 96.23 

2002 97.30 96.38 

2014 88.76 83.00 

2022 92.75 90.46 

Owerri 1986 95.83 94.48 

2002 96.67 95.80 

2014 86.67 82.86 

2022 92.31 89.88 

Makurdi 1986 96.15 95.05 

2002 96.77 95.81 

2014 95.24 93.71 

2022 95.83 94.75 

Minna 1986 89.00 82.70 

2002 92.06 88.55 

2014 93.15 90.18 

2022 95.12 93.76 
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4.1.1.2   Landscape structure dynamics 

a. Landscape structural composition at the class level 

i. Patch density (PD) 

The patch density (per 100 ha) followed an increasing pattern for the built-up area class for the 

four cities but with fluctuations for Makurdi and Minna, and an almost uniform pattern for Owerri 

(Figure 4.3). PD increased from 1986 to 2002 for the vegetation class for Akure, Owerri, and 

Minna, and further increased between 2014 and 2022 in all cities except Minna. The PD for the 

agricultural class decreased from 1986 to 2002 for Akure, Makurdi and Minna, but increased in 

the four cities between 2002 and 2014, and then declined in 2022.  

ii. Largest patch index (LPI) 

For the built-up class, LPI ranged below 12% in Akure, 21% in Owerri, 12% in Makurdi, and 4% 

in Minna (Figure 4.3). However, it increased consistently for 1986–2022 in Akure, Owerri, and 

Makurdi but remained almost uniform for Minna. For the vegetation class, LPI declined between 

1986 and 2022 from 58.57% to 14.41% in Akure, 32.34 to 21.77% in Owerri, 30.80% to 17.66% 

in Makurdi, and 6.35% to 2.52% in Minna. LPI of agricultural land class varied from 3.00% to 

23.57% in Akure, 3.21% to 17.19% in Owerri, 8.75% to 12.54% in Makurdi, and 56% to 82.56% 

in Minna.  

iii. Edge density (ED) 

In Akure, the ED of the built-up class between 1986 and 2022 increased from 6.41 to 44.80 m/ha, 

29.66 to 57.07 m/ha in Owerri, 29.66 to 57.07 m/ha in Makurdi, and 9.28 to 18.79 m/ha in Minna 

(Figure 4.3). This suggests that Makurdi and Minna in the Guinea savanna had the highest levels 

of urban landscape fragmentation. For the agricultural class, ED between 1986 and 2022 increased 



99 
 

from 100.08 m/ha to 104.33 m/ha in Akure, 87.88 m/ha to 119.37 m/ha in Owerri, but decreased 

from 111.79 m/ha to 102.47 m/ha in Makurdi, and 84.51 m/ha to 58.64 m/ha in Minna. The ED 

for the vegetation class followed a similar temporal pattern in Akure, Owerri, and Makurdi from 

1986 to 2014. For this class between 1986 and 2022, ED changed from 84.33 m/ha to 60.10 m/ha 

in Akure, 70.72 m/ha to 75.18 m/ha in Owerri, 104.99 m/ha to 80.04 m/ha in Makurdi, and 75.13 

m/ha to 14.41 m/ha in Minna.  

b. Landscape structural configuration at the class level 

i. Shape index (SHAPE) 

For the built-up class, the shape index (SHAPE) between 1986 and 2022 increased from 1.19 to 

1.22 in Akure, decreased from 1.26 to 1.21 in Owerri, increased from 1.20 to 1.27 in Makurdi, and 

1.141 to 1.143 in Minna (Figure 4.4). This indicates an increasing level of irregularity in urban 

areas in terms of spatial configuration for Akure and Owerri. For the vegetation class, SHAPE 

between 1986 and 2022 changed from 1.22 to 1.28 in Akure, 1.28 to 1.24 in Owerri, 1.23 to 1.24 

in Makurdi, and 1.24 to 1.19 in Minna. SHAPE for the agricultural land class between 1986 and 

2022 varied from 1.26 to 1.27 in Akure, 1.29 to 1.30 in Owerri, 1.31 to 1.29 in Makurdi, and 1.23 

to 1.22 in Minna. The changing pattern of SHAPE underscores the varying magnitude of landscape 

complexity over time due to various anthropogenic operations.  
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Figure 4.3 Landscape Compositional Characteristics of the LULC Classes 
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Figure 4.4 Landscape Structural Configuration of the LULC Classes
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c. Landscape structural connectivity and aggregation at the class level 

i. Euclidean nearest-neighbour distance (ENN) 

For the built-up class between 1986 and 2022, ENN decreased from 199.07 m to 112.14 m in 

Akure, 99.27 m to 96.48 m in Owerri, 113.23 m to 83.26 m in Makurdi, and 159.64 m to 138.11 

in Minna (Figure 4.5). ENN for the vegetation class increased from 82.00 m to 100.64 m in Akure, 

80.71 m to 90.17 m in Owerri, 76.47 m to 87.03 m in Makurdi, and 88.45 m to 129.00 m in Minna. 

For the agricultural land class, ENN increased from 84.10 m to 86.08 m in Akure, decreased from 

82.31 m to 78.49 m in Owerri, but slightly ranged from 78.82 m to 78.87 m in Makurdi, and 77.21 

m to 78.38 m in Minna.  

ii. Aggregation index (AI) 

AI values for the built-up class slightly decreased between 1986 and 2022 for Akure and Owerri. 

Makurdi and Minna underwent an increment, showing increasing densification of the built-up 

landscape in these cities (Figure 4.5). The AI value for the vegetation class declined for all cities 

between 1986 and 2022, suggesting persistent habitat fragmentation. AI for the agricultural land 

class between 1986 and 2022 increased for all cities due to increasing density of farmland patches.  
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Figure 4.5 Landscape Connectivity and Aggregation of the LULC Classes 
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4.1.1.3   Correlation between the landscape structure and LULC classes 

The results of the Spearman rank correlation analysis which was used to assess the degree of 

association between landscape metrics and the respective spatial extent of the built-up, agricultural 

and vegetation LULC classes, are presented in Figure 4.6. Built-up land proportion showed a 

positive correlation with the largest patch index, LPI (r = 0.86, p < 0.05) and aggregation index, 

AI (r = 0.39, p < 0.05). The suggests as urban areas expand due to developmental activities, there 

is a concurrent increase in the compaction and densification of built-up landscapes, that is, 

reduction in intervening corridors such as vegetation. 

The negative correlation between the agricultural land proportion and PD (r = -0.88, p < 0.05) 

indicates a reduction in the extent of agricultural land with a growing trend of fragmentation. Thus, 

landscapes characterised by larger agricultural areas experience less fragmentation. This is 

supported by the positive correlation the landscape proportion and aggregation, AI (r = 0.90, p < 

0.05). Phases of increased vegetation cover, for instance, in comparison with agricultural land, 

suggest larger vegetation patches. 

The vegetation class proportion showed a negative relationship to PD (r = -0.67, p < 0.05) which 

indicates an increased degree of fragmentation as the area extent of the vegetation class declines. 

Vegetation proportion revealed a negative correlation with landscape connectivity, ENN (r = -

0.77, p < 0.05), and a positive correlation with largest patch index, LPI (r = 0.93, p < 0.05) and 

aggregation (r = 0.89, p < 0.05). This indicates that the decrease in the proportion of vegetation 

class is associated with a growing magnitude of landscape heterogeneity and connectivity.  
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Figure 4.6 Correlation between Landscape Metrics and the LULC Proportion
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4.1.1.4   Variation in the landscape structure across cities 

Temporal changes in the structural properties of the entire landscape of individual cities between 

1986 and 2022 are shown in Figure 4.7. Patch density (PD) increased from 22.92 to 29.78 ha-1 in 

Akure between 1986 and 2002 but declined to 20.33 ha-1 in 2022 suggesting the probable landscape 

restoration. PD increased from 20.37 to 24.85 ha-1 in Owerri, 24.73 to 38.78 ha-1 in Makurdi. In 

Minna, PD changed from 18.00 ha-1 in 1986 to 18.55 ha-1 in 2002, 29.12 ha-1 in 2014, and down 

to 17.35 ha-1 in 2022. The PD for all cities increased appreciably, suggesting an increasing 

magnitude of landscape fragmentation over time, with the highest level observed in Makurdi and 

Minna, which belong to the savanna ecoregion (Figure 4.7). However, PD did not show 

statistically significant variations within and between ecological regions, as reported by Kruskal-

Wallis test with H(3) = 5.71, p > 0.05 (Table 4.3).  

The landscape shape index (LSI) increased between 1986 and 2022 from 97.37 to 99.02 in Akure, 

61.31 to 75.88 in Owerri, 95.03 to 107.26 in Makurdi, but declined from 90.59 to 63.74 in Minna 

(Figure 4.7). Over time, the increasing pattern of LSI suggests a continuous deviation of the shapes 

of patches and classes from an ideal square shape towards more complex patterns. Kruskal-Wallis 

test showed that LSI varied significantly among the landscapes at H(3) = 8.10, p < 0.05, whereas 

the Dunn’s post hoc test reported that this variation was between Owerri and Makurdi (Table 4.3). 

In Akure, the Contagion index CONTAG reduced from 55.27 in 1986 to 47.87 in 2022 (Figure 

4.7). In Owerri, it has declined from 50.09 in 1986 to 46.72 in 2022. CONTAG between 1986 and 

2022 decreased from 46.25 to 35.60 in Makurdi, but increased from 64.03 to 70.96 in Minna. 

While the degree of aggregation fluctuated between 1986 and 2022 in the cities of the Rainforest 

ecoregion, it decreased consistently in those of the Guinea savannah. CONTAG between these 
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cities varied significantly at H(3) = 12.79, p < 0.05, with variations between cities of the same 

ecoregion, i.e., Minna and Makurdi (Table 4.3).  

Between 1986 and 2022, the Shannon’s diversity index (SHDI) increased from 0.94 to 1.14 in 

Akure, 1.08 to 1.13 in Owerri, 1.13 to 1.35 in Makurdi, but decreased from 0.74 to 0.60 in Minna. 

The SHDI (H(3) = 12.20, p < 0.05) varied significantly among the cities, as illustrated in Table 

4.3, with differences occurring between cities of the same ecoregion, i.e., Minna and Makurdi.   

 

 

Figure 4.7 Landscape Structural Characteristics at the Landscape Level 
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Table 4.3 Analysis of Variance and Pairwise Comparison of Landscape Indices of 

Landscapes across Cities 

Index Kruskal-Wallis Dunn’s Post Hoc Test 

Test Statistic (H) p-value Pairwise 

Comparison 

Z p-value 

PD 5.7132 0.13 Makurdi-Akure -1.41 0.475 

Minna-Akure 0.97 1.000 

Owerri-Akure -0.15 1.000 

Minna-Makurdi 2.38 0.053 

Owerri-Makurdi 1.26 0.620 

Owerri-Minna -1.11 0.796 

LSI 8.0956 0.04 Makurdi-Akure -0.52 1.000 

Minna-Akure 0.74 1.000 

Owerri-Akure 2.15 0.094 

Minna-Makurdi 1.26 0.620 

Owerri-Makurdi 2.67 0.023* 

Owerri-Minna 1.41 0.475 

CONTAG 12.7941 0.01 Makurdi-Akure 1.93 0.161 

Minna-Akure -1.63 0.307 

Owerri-Akure 0.30 1.000 

Minna-Makurdi -3.56 0.001* 

Owerri-Makurdi -1.63 0.307 

Owerri-Minna 1.93 0.161 

SHDI 12.1985 0.01 Makurdi-Akure -1.71 0.263 

Minna-Akure 1.78 0.224 

Owerri-Akure -0.07 1.000 

Minna-Makurdi 3.49 0.0014* 

Owerri-Makurdi 1.63 0.307 

Owerri-Minna -1.86 0.190 

*Significant at 0.05 
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Null hypothesis (Ho): Landscape structural characteristics do not vary significantly within and 

between ecoregions. 

In view of the results of the first objective of this study, especially, Table 4.3, the first research 

hypothesis, which states that landscape structural characteristics do not vary significantly within 

and between ecoregions, can thereby be rejected, and one can conclude that landscape structural 

characteristics (such as largest patch index (LSI), contagion index (CONTAG) and Shannon 

Diversity Index (SHDI)) exhibit statistically significant significantly within and between 

ecological regions.  

 

4.1.2 Modelling ecosystem regulating services in relation to landscape changes 

This section presents the results of the second objective of this study which seeks to model the 

spatiotemporal distribution of ecosystem regulating services in relation to changes in landscape 

changes in cities of the ecoregions between 2002 and 2022. It is presented in four segments: the 

spatiotemporal dynamics of vegetation health; the spatiotemporal pattern of carbon storage and 

sequestration; the spatiotemporal pattern of urban cooling capacity and heat mitigation services; 

and the spatiotemporal pattern of stormwater runoff and retention. 

4.1.2.1   Spatiotemporal dynamics of landscape status and vegetation health 

The spatial and temporal characteristics of NDVI, a measure of vegetation health and landscape 

status, for 2002 and 2022 are presented in Table 4.4 and Figure 4.8. In all cities, vegetation health 

declined considerably between the two years as NDVI values less than 0.40 radially become 

predominant from the core to about a 20 km buffer. In 2022, NDVI values less than 0.20 were 

predominantly found within a 15 km buffer from the urban core, especially in Akure, Owerri and 
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Minna, highlighting the imprint of urban expansion on vegetation status (Figure 4.8). In Akure, 

the mean and maximum values of NDVI showed an increment from 0.53 to 0.64, and 0.84 to 0.97, 

respectively over the period (Table 4.4), reflecting an improvement in NDVI (>0.60) in most areas 

between 20 km and 30 km buffer. In Owerri, the mean NDVI value decreased from 0.64 to 0.53, 

while the maximum value increased from 0.87 to 0.90. In Makurdi, the mean NDVI increased 

from 0.35 to 0.39 but the maximum value declined slightly from 0.74 to 0.73. Both mean and 

maximum values decreased in Minna from 0.40 to 0.34, and 0.80 to 0.74, respectively.  

Table 4.4 Descriptive Summary of NDVI Pattern 

Location Year Mean Minimum Maximum 

Akure (RF) 2002 0.53 (±0.10) 0.06 0.84 

2022 0.64 (±0.16) -0.16 0.97 

Owerri (RF) 2002 0.64 (±0.11) 0.03 0.87 

2022 0.53 (±0.15) -0.44 0.90 

Makurdi (GS) 2002 0.35 (±0.12) -0.32 0.74 

2022 0.39 (±0.13) -0.33 0.73 

Minna (GS) 2002 0.40 (±0.09) -0.17 0.80 

 2022 0.34 (±0.07) -0.42 0.74 
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Figure 4.8 Spatial Distribution of NDVI in 2002 and 2022 
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4.1.2.2   Carbon storage and sequestration 

a. Spatiotemporal pattern of carbon storage and sequestration 

The spatiotemporal distribution of carbon storage and sequestration for the four cities is illustrated 

in Figures 4.9 and 4.10. These patterns correspond closely with the observed changes in LULC 

and NDVI distributions (Figures 4.1 and 4.8). In 2022, areas within a 10 km buffer predominantly 

stored less than 2.0 tons of carbon, and had a high proportion of built-up areas, compared to 2002. 

A contrast was observed between the Rainforest cities (Akure and Owerri) in terms of carbon 

richness (12.1 tons – 16.0 tons) beyond the 15 km buffer compared to the Guinea savanna 

counterparts (Makurdi and Minna) (2.0 tons – 5.0 tons). 

The total quantity of carbon stored and sequestered in the four cities between 2002 and 2022 is 

presented in Table 4.5. Carbon storage declined in all cities, from 15.14 million tons to 12.36 

million tons in Akure, 6.36 million tons to 4.97 million tons in Owerri, 4.28 million tons to 3.91 

million tons in Makurdi, and 7.54 million tons to 4.99 million tons in Minna. Rather than having 

a condition of carbon sequestration, there was the depletion of the carbon sink by 18.35% (2.78 

million tons), 21.95% (1.40 million tons), 8.60% (0.37 million tons) and 33.83% (2.55%) in Akure, 

Owerri, Makurdi and Minna, respectively, within the spate of two decades.  

a. Spatially varying relationship between carbon sequestration and NDVI change 

Using the spatial change in NDVI as a proxy for landscape changes, the geographically weighted 

regression (GWR) was used to model the relationship between the quantity of sequestered carbon 

(carbon change) and changes in landscape pattern, between 2002 and 2022. The performance and 

standard residual of this model for the four cities are illustrated in Figure 4.11 and Table 4.6. The 

relationship between carbon and vegetation health differences showed the strongest strength (local 
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R2) in the western half of Akure, the eastern half of Owerri, the southwestern segment of Makurdi, 

and the northwestern and northeastern segments of Minna (Figure 4.11).  

 

Figure 4.9 Spatial Distribution of Carbon Storage in 2002 and 2022 
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Figure 4.10 Spatial Distribution of Carbon Sequestered between 2002 and 2022 

 

Table 4.5 Quantity of Carbon Stored and Sequestered between 2002 and 2022 

Location Year Carbon Storage 

(tons) 

Sequestration (2002-22) Sequestration (%) 

(2002-22) 

Akure (RF) 2002 15,136,887.67 -2,777,645.03 -18.35 

2022 12,359,186.53 

Owerri (RF) 2002 6,363,617.57 -1,396,657.49 -21.95 

2022 4,966,944.31 

Makurdi (GS) 2002 4,276,351 -367,738.43 -8.60 

2002 3,908,612.56 

Minna (GS) 2022 7,544,698.77 -2,552,180.18 -33.83 

2022 4,992,513.3 
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Figure 4.11 Spatial Relationship between Carbon Sequestered and NDVI Change 
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Table 4.6 Summary statistics of the Geographically Weighted Regression Model of Carbon 

Sequestered and NDVI Change 

GWR Akure Owerri Makurdi Minna 

Bandwidth 586058.850 13793.684 10144.624 13017.466 

Residual squares 112.557 67.732 14.471 8.516 

Effective number 2.005 5.916 9.115 11.484 

Sigma 1.678 1.677 0.813 0.546 

AICc 167.232 123.569 86.32 78.402 

R2 0.2774 0.4535 0.5910 0.7445 

R2 Adjusted 0.2593 0.3419 0.4393 0.6506 

 

However, the GWR final model reported a relatively low contribution of NDVI change to carbon 

sequestration in the Rainforest cities, that is, Akure (adjusted R2 = 25.93%) and Owerri (adjusted 

R2 = 34.19%), compared to their Guinea savanna counterparts, Makurdi (adjusted R2 = 43.93%) 

and Minna (adjusted R2 = 65.06%) (Table 4.6). 

4.1.2.3   Heat mitigation 

a. Spatiotemporal pattern of urban cooling capacity and heat mitigation services 

The spatial characteristics of the cooling capacity and heat mitigation effect of the cities are 

presented in Figures 4.1– 4.13 and Table 4.7. The cooling capacity of all cities is compromised 

within a 10 km buffer as the values were largely below 0.20. Areas with a cooling capacity of over 

0.60 declined in their spatial distribution from 2002 to 2022, being limited to beyond a 15 km–20 

km radius in Akure and Owerri. Areas with more than 0.60 are only found in the NNW, SSE, SSW 

and WSW 15 km–20 km in Makurdi, and the WNW 20 km–35 km. This observation corresponds 

to a decline in the average cooling capacity, which changed from 0.58 to 0.50 in Akure, 0.54 to 

0.44 in Owerri, 0.44 to 0.39 in Makurdi, and 0.46 to 0.37 in Minna. 
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Figure 4.12 Urban Cooling Capacity (CC) for 2002 and 2022 
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Table 4.7 Summary of Urban Cooling and Heat Mitigation Model 

Location Year Cooling 

Capacity 

Heat Mitigation 

Index (HMI) 

Average 

Temperature (oC) 

Akure (RF) 2002 0.58 0.89 24.5 

2022 0.50 0.76 25.0 

Owerri (RF) 2002 0.54 0.86 24.5 

2022 0.44 0.76 24.9 

Makurdi (GS) 2002 0.44 0.73 24.7 

2022 0.39 0.60 25.0 

Minna (GS) 2002 0.46 0.97 24.1 

2022 0.37 0.92 24.2 

 

However, the spatial distribution of the urban heat mitigation index (HMI) (Figure 4.13), which 

takes into consideration the cooling effect of green spaces greater than two hectares, corresponds 

closely with that of cooling capacity (Figure 4.12). An island of urban warming is characteristic 

of areas within a 5 km buffer in 2002, which spread to about 10 km in 2022. The potential to 

mitigate heat is prevalent in areas beyond the 15 km buffer. On average, HMI showed a 

considerable reduction in all cities, changing from 0.89 to 0.76 in Akure, 0.86 to 0.76 in Owerri, 

0.76 to 0.73 in Makurdi, and 0.97 to 0.92 in Minna, amounting to declines of 13%, 10%, 13% and 

5%, respectively. This situation is associated with an increase in average air temperature from 

24.5oC to 25oC in Akure, 24.5oC to 24.9oC in Owerri, 24.7oC to 25.0oC in Makurdi, and 24.1oC to 

24.2oC in Minna. 
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Figure 4.13 Heat Mitigation Index (HMI) for 2002 and 2022 

 

b. Spatially varying relationship between changes in heat mitigation index and NDVI change 

The spatial relationship between the change in NDVI and the change in heat mitigation index 

(HMI) between 2002 and 2022 was assessed using the GWR model (Figure 4.14; Table 4.9).  
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Figure 4.14 Spatial Relationship between HMI Change and NDVI Change 
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The relationship between HMI change and HMI change showed the strongest strength (local R2) 

in the eastern half of Akure, the southwestern and northeastern segments of Owerri, the northern 

segment of Makurdi, and the southeastern segment of Minna (Figure 4.14). However, the GWR 

final model reported a comparatively higher contribution of NDVI change to change in HMI in 

the Rainforest cities, that is, Akure (adjusted R2 = 67.99%) and Owerri (adjusted R2 = 91.8%), 

than the Guinea savanna cities, Makurdi (adjusted R2 = 50.50%) and Minna (adjusted R2 = 

35.60%) (Table 4.8). 

Table 4.8 Summary Statistics of the Geographically Weighted Regression Model of HMI 

Change and NDVI Change 

GWR Akure Owerri Makurdi Minna 

Bandwidth 586058.850 10028.138 8336.753 13426.452 

Residual squares 0.318 0.044 0.236 0.562 

Effective number 2.005 9.208 11.013 11.057 

Sigma 0.089 0.046 0.109 0.139 

AICc -79.218 -87.513 -35.923 -31.586 

R2 0.6877 0.9410 0.67 0.522 

R2 Adjusted 0.6799 0.918 0.5050 0.3560 

 

 

4.1.2.4   Stormwater retention 

a. Runoff volume and runoff coefficient  

The spatial distribution of stormwater runoff volume runoff coefficient for 2002 and 2022 is 

presented in Figures 4.15 and 4.16. In Akure and Owerri, runoff increased appreciably in volume, 

within a 15-20 km buffer of the urban core. In contrast, only a slight increase in the spatial extent 

of 401-600 m3 runoff in Makurdi and Minna. Between 2002 and 2022, the average runoff volume 
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increased by 11.69% in Akure and 3.43% in Makurdi, but declined by 9.95% in Owerri and 2.09% 

in Minna (Table 4.9). On the average, the runoff coefficient, which is the ratio of runoff to 

precipitation in a given area, increased by 8.33% (Akure), 2.86% (Owerri), 13.89% (Makurdi) and 

0.30% (Minna) (Table 4.9). Its distributional pattern corresponds closely with that of runoff 

volume with an increased runoff coefficient at the urban core areas with a 15 km radius by 2022 

due to the increasing built-up nature (Figure 4.16).  

Table 4.9 Stormwater Runoff Volume and Coefficient between 2002 and 2022 

Location Year Runoff 

Volume 

(m3/yr) 

Δ Runoff 

Volume 

(m3/yr) 

Runoff 

Coefficient 

Δ Runoff 

Coefficient 

(%) 

Akure (RF) 2002 482.42 55.96 (11.69%) 0.36 8.33 

2022 538.38 0.39 

Owerri (RF) 2002 745.49 -74.14 (-9.95%) 0.35 2.86 

2022 671.35 0.36 

Makurdi (GS) 2002 438.22 15.03 (3.43%) 0.36 13.89 

2022 453.25 0.41 

Minna (GS) 2002 294.99 6.17 (-2.09%) 0.281 0.30 

2022 288.82 0.284 
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Figure 4.15 Spatial Distribution of Stormwater Runoff Volume in 2002 and 2022 
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Figure 4.16 Spatial Distribution of Stormwater Runoff Coefficient in 2002 and 2022 
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b. Retention volume and retention 

The spatial pattern of stormwater retention and retention coefficient for 2002 and 2022 is 

illustrated in Figures 4.17 and 4.18. Akure and Owerri exhibited the highest capacity for 

stormwater retention given the high rainfall potential of the Rainforest environment. In all cities, 

core areas, within a 10 km buffer are characterised by lower retention potential compared to the 

periphery. On the average, stormwater retention volume declined in all cities between 2002 and 

2022 (Table 4.10). The highest decline was observed in Owerri (-14.83%) and Makurdi (-12.98%), 

followed by Minna (-3.15%) and Akure (-1.55%). However, retention coefficient which is the ratio 

of stormwater retained by the soil to total precipitation, also decreases in all cities, with the highest 

in Makurdi (-6.35%) followed by Akure (-4.69%), Owerri (-1.54%) and Minna (-1.39%) (Table 

4.11). 

Table 4.10 Stormwater Retention Volume and Coefficient between 2002 and 2022 

Location Year Retention 

volume 

(m3/yr) 

Δ Retention 

volume (m3/yr) 

Retention 

coefficient 

Δ Retention 

coefficient 

(%) 

Akure (RF) 2002 847.98 -13.13 (-1.55%) 0.64 -4.69 

2022 834.85 0.61 

Owerri (RF) 2002 1391.18 -206.29 (-14.83%) 0.65 -1.54 

2022 1184.89 0.64 

Makurdi (GS) 2002 762.34 -98.96 (-12.98%) 0.63 -6.35 

2022 663.38 0.59 

Minna (GS) 2002 751.56 -23.70 (-3.15%) 0.72 -1.39 

2022 727.86 0.71 
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Figure 4.17 Spatial Distribution of Stormwater Retention Volume in 2002 and 2022 
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Figure 4.18 Spatial Distribution of Stormwater Retention Ratio in 2002 and 2022 
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c. Spatially varying relationship between changes in stormwater retention and NDVI change 

The spatial relationship between the change in NDVI and stormwater retention between 2002 and 

2022, evaluated using the GWR model is presented in Figure 4.19 and Table 4.12. In cities of the 

Rainforest, the strongest relationships (local R2) were identified southern segment of Akure, and 

the northern and western segments of Owerri. In contrast, cities of the Guinea savanna are 

characterised by a haphazard distribution of high and low local R2 values (Figure 4.19). However, 

NDVI was observed to have a greater impact on the distribution of stormwater retention in the 

Rainforest cities, that is, Akure (Adjusted R2 = 59.52%) and Owerri (Adjusted R2 = 82.73%), 

compared to their Guinea savanna counterparts, that is, Makurdi (Adjusted R2 = 46.87%) and 

Minna (Adjusted R2 = 23.79%) (Table 4.11).  

 

Table 4.11 Summary Statistics of the Geographically Weighted Regression Model of 

Stormwater Retention and NDVI Change 

GWR Akure (RF) Owerri (RF) Makurdi (GS) Minna (GS) 

Bandwidth 586058.85 8038.40 8682.27 15403.55 

Residual squares 53550.24 25472.85 39654.65 90155.91 

Effective number 2.01 12.25 10.51 9.36 

Sigma 36.59 37.88 43.99 54.25 

AICc 426.16 321.25 335.32 443.20 

R2 0.6051 0.8943 0.6371 0.4013 

R2 Adjusted 0.5952 0.8273 0.4687 0.2379 
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Figure 4.19 Spatial Relationship between Stormwater Retention Volume and NDVI Change 
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4.1.3 Characteristics and drivers of the changes in urban landscape and ecosystem 

regulating services in the Rainforest and Guinea savanna ecoregions of Nigeria 

This section presents the results of the third objectives of this study which seeks to investigate the 

characteristics and drivers of the changes in landscape and ecosystem regulating services in cities 

of the ecoregions. It has six subsections: (i) socioeconomic characteristics of the respondents; (ii) 

perceived characteristics of landscapes and landscape changes; (iii) impact of landscape changes 

on access to social services; (iv) assessing the status of ecosystem services in the neighbourhood; 

(v) effects of household socioeconomic profile on the environmental concern for landscape 

changes; (vi) effect of population growth/in-migration, economic activities and climate on natural 

landscape status, and the associated socioenvironmental problems. 

4.1.3.1   Socioeconomic characteristics of the respondents 

The socioeconomic profiles of the respondents in Akure, Owerri, Makurdi, and Minna are outlined 

in Tables 4.12 and 4.13. The male population dominates the samples, ranging between 51.2% to 

78.6%. Age-wise, individuals between 26–40 years and 41–60 years constitute the majority. The 

main ethnic group in Akure is Yoruba (94.0%), in Owerri is Igbo (95.9%), and in Makurdi are Tiv 

(43.0%) and Idoma (21.5%), while ethnic diversity is spread across several groups in Minna. More 

than 26% of respondents in all cities attained secondary education while more than 34% have 

tertiary education. 

 In Akure, the dominant occupations are trading/commerce (31.9%), civil/public service (14.3%), 

student (13.5%), and farming (11.2%); Owerri includes trade/commerce (36.0%), student (14.0%), 

private firm employee (12.3%), and unemployed (11.9%); Makurdi includes civil/public service 
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(19.7%), trade/commerce (19.4%), farming (18.7%), and artisan (11.9%); and Minna includes 

trade/commerce (33.6%), civil/public service (23.3%), farming (13.4%), and student (11.2%).  

Table 4.12 Socioeconomic Characteristics of the Respondents (Cultural, Educational and 

Occupational) 

Variable 
 

Akure (n = 

385) 

Owerri (n = 

394) 

Makurdi (n = 

386) 

Minna (n = 

387) 

Total (N = 

1552) 

Gender Male 51.2% (197) 51.8% (204) 58.8% (227) 78.6% (304) 60.1% (932) 

Female 48.8% (188) 48.2% (190) 41.2% (159) 21.4% (83) 39.9% (620) 

Age 18 – 25 years 16.4% (63) 17.5% (69) 16.1% (62) 9.0% (35) 14.8% (229) 

26 – 40 years 44.7% (172) 38.1% (150) 44.8% (173) 52.2% (202) 44.9% (697) 

41 – 60 years 23.9% (92) 35.3% (139) 30.6% (118) 34.6% (134) 31.1% (483) 

Above 60 years 15.1% (58) 9.1% (36) 8.5% (33) 4.1% (16) 9.2% (143) 

Ethnicity Yoruba 94.0% (362) 1.8% (7) 2.8% (11) 10.9% (42) 27.2% (422) 

Igbo 3.4% (13) 95.9% (378) 5.4% (21) 7.5% (29) 28.4% (441) 

Hausa 0.0% (0) 1.0% (4) 10.1% (39) 21.2% (82) 8.1% (125) 

Fulani 0.0% (0) 0.0% (0) 2.8% (11) 3.9% (15) 1.7% (26) 

Gwari 0.0% (0) 0.0% (0) 1.6% (6) 38.8% (150) 10.1% (156) 

Nupe 0.0% (0) 0.0% (0) 0.5% (2) 14.2% (55) 3.7% (57) 

Idoma 0.3% (1) 0.5% (2) 21.5% (83) 0.3% (1) 5.6% (87) 

Tiv 0.3% (1) 0.0% (0) 43.0% (166) 0.3% (1) 10.8% (168) 

Others 2.1% (8) 0.8% (3) 12.2% (47) 3.1% (12) 4.5% (70) 

Education 

attainment 

No formal 

education 

6.0% (23) 4.1% (16) 10.6% (41) 19.9% (77) 10.1% (157) 

Primary 

education 

12.7% (49) 1.5% (6) 5.2% (20) 5.4% (21) 6.2% (96) 

Secondary 

education 

31.2% (120) 26.9% (106) 26.9% (104) 33.9% (131) 29.7% (461) 

Vocational 

education 

15.3% (59) 16.8% (66) 14.5% (56) 6.2% (24) 13.2% (205) 

Tertiary 

education 

34.8% (134) 50.8% (200) 42.7% (165) 34.6% (134) 40.8% (633) 

Main 

occupation 

Artisan 10.1% (39) 7.6% (30) 11.9% (46) 2.3% (9) 8.0% (124) 

Civil/public 

service 

14.3% (55) 9.9% (39) 19.7% (76) 23.3% (90) 16.8% (260) 

Farming 11.2% (43) 3.6% (14) 18.7% (72) 20.4% (79) 13.4% (208) 

Private firm 

employee 

7.3% (28) 12.2% (48) 6.7% (26) 4.1% (16) 7.6% (118) 

Retired 6.8% (26) 4.8% (19) 7.0% (27) 5.7% (22) 6.1% (94) 

Student 13.5% (52) 14.0% (55) 9.8% (38) 7.5% (29) 174 (11.2%) 

Trade/Commerce 31.9% (123) 36.0% (142) 19.4% (75) 33.6% (130) 30.3% (470) 

Unemployed 4.9% (19) 11.9% (47) 6.7% (26) 3.1% (12) 6.7% (104) 
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Household sizes are predominantly in the 3–5 (51.2%) and 6–10 (42.1%) categories in Akure, 3–

5 (57.9%) in Owerri, 3–5 (49.4%) and 6–10 (41.1%) in Makurdi, and 3–5 (47.0%) and 6–10 

(38.1%) in Minna. More than 47% of the respondents have been residing in their respective 

communities for more than five years.  

Table 4.13 Socioeconomic Characteristics of the Respondents (Households and Residential 

Arrangements) 

Variable  Akure (n = 

385) 

Owerri (n = 

394) 

Makurdi (n 

= 386) 

Minna (n = 

387) 

Total (N = 

1552) 

Household 

size 

1– 2 5.0% (19) 11.7% (46) 7.0% (27) 11.1% (43) 8.7% (135) 

3 – 5 51.2% (197) 57.9% (228) 49.4% (191) 29.1% (113) 47.0% 

(729) 

6 – 10 42.1% (162) 28.1% (111) 41.1% (159) 41.7% (161) 38.1% 

(593) 

> 10 1.9% (7) 2.5% (9) 2.4% (9) 18.2% (70) 6.2% (95) 
      

Duration of 

residences in 

the community 

Less than 1 year 4.2% (16) 3.6% (14) 10.9% (42) 0.5% (2) 4.8% (74) 

1 – 2 years 7.5% (29) 12.9% (51) 19.4% (75) 2.6% (10) 10.6% 

(165) 

3 – 5 years 16.1% (62) 34.3% (135) 22.0% (85) 15.0% (58) 21.9% 

(340) 

> 5 years 72.2% (278) 49.2% (194) 47.7% (184) 81.9% (317) 62.7% 

(973) 

Residential 

building type 

Hut 0.5% (2) 5.3% (21) 8.8% (34) 0.5% (2) 3.8% (59) 

Brazilian type (face 

to face) 

35.8% (138) 3.3% (13) 27.5% (106) 20.9% (81) 21.8% 

(338) 

Single 

apartment/self-

cointain/flat 

33.5% (129) 24.1% (95) 50.8% (196) 20.9% (81) 32.3% 

(501) 

Bungalow 18.4% (71) 38.3% (151) 8.8% (34) 38.2% (148) 26.0% 

(404) 

Duplex 2.6% (10) 7.1% (28) 1.0% (4) 11.1% (43) 5.5% (85) 

Storey building 8.8% (34) 17.5% (69) 2.6% (10) 1.8% (7) 7.7% (120) 

Others 0.3% (1) 4.3% (17) 0.5% (2) 6.5% (25) 2.9% (45) 

Main means of 

cooking 

Firewood/charcoal 31.4% (121) 9.1% (36) 49.2% (190) 70.0% (271) 39.8% 

(618) 

Kerosene 1.0% (4) 4.1% (16) 4.4% (17) 1.0% (4) 2.6% (41) 

Cooking gas 67.0% (258) 83.8% (330) 45.6% (176) 27.4% (106) 56.1% 

(870) 

Others 0.5% (2) 3.0% (12) 0.8% (3) 1.6% (6) 1.5% (23) 
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The type of residential buildings inhabited by the respondents of Akure include Brazilian type 

(35.8%), single apartment/flat (33.5%) and bungalow (18.4%); Owerri include bungalow (38.5%), 

single apartment/flat (24.1%) and storey building (17.5%); Makurdi include single apartment/flat 

(50.8%), Brazilian type (27.5%), bungalow (8.8%), hut (8.8%); and Minna include single 

apartment/flat (32.3%), bungalow (26%), and Brazilian type (21.8%). The main means of cooking 

in the four cities are cooking gas and firewood/charcoal. However, the use of firewood/charcoal is 

more prevalent in Minna (70.0%) and Makurdi (49.2%), compared to Akure (31.4%) and Owerri 

(9.1%). 

4.1.3.2   Perceived characteristics of landscapes and landscape changes 

a. Dominant land use and land cover types of the neighbourhood within 500 metres of 

residence 

In each surveyed city, the respondents perceived residential land use as the prevailing land type 

within a 500-metre radius of their neighbourhoods, with 71.4% in Akure, 67.5% in Owerri, 69.4% 

in Makurdi, and 77.8% in Minna (Figure 4.20). Although with marked differences, this is followed 

by commercial land use in Akure (17.4%), Owerri (21.6%), and Makurdi (18.82%). Notably, 

farming activities ranked second in relevance in Minna (11.4%) but took a third-place position in 

Akure (7.3%), Owerri (3.8%), and Makurdi (7.5%). Although vegetation, including forest and 

grassland, constituted a minority, it exhibited the highest proportions in Makurdi (4.4%) and 

Minna (1.3%).  
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Figure 4.20 Perceived Dominant LULC Types in the Neighbourhood within 500 metres of 

Residence 

 

The Kruskal-Wallis test confirmed a statistically significant difference in respondents' perceptions 

of dominant land use in their respective neighbourhoods (H(3) = 14.98, p < 0.05). However, only 

the cities of Owerri (tropical Rainforest) and Minna (Guinea savanna) recorded a significant 

difference in perceived LULC types (Table 4.14). This variation may not be exclusively due to 

ecological disparity between the cities but a result of the varying levels of developmental activities. 
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Table 4.14 Test of Difference in Perceived Dominant LULC Type in your Neighbourhood 

Index Kruskal-Wallis Dunn’s post hoc test 

Test statistic 

(H) 

p-value Pairwise comparison Z p-value 

Dominant 

land use 

14.98 0.000 Makurdi-Akure -0.2425 1.0000 

Minna-Akure -2.3722 0.0530 

Owerri-Akure 1.4471 0.4436 

Minna-Makurdi -2.1309 0.0993 

Owerri-Makurdi 1.6919 0.2720 

Owerri-Minna 3.8349 0.0004* 

*Significant at p<0.05  

 

 

b. Status of natural forest or grassland vegetation in the neighbourhood in the last five years 

Respondents perceived the status of natural habitats such as forest or vegetation in their 

environment to have degraded in the last five years, varying from the highest in Makurdi (70.5%) 

and Minna (61.2%) in the Guinea savanna to Akure (60%) to Owerri (54.6%) in the Rainforest 

(Figure 4.21). Certain individuals identified no habitat change, especially in Akure (39%), Owerri 

(13.2%) and Minna (17.9%), while an improvement in natural habitat was recorded by 32.2% 

(Owerri), 11.7% (Makurdi) and 33.3% (Minna).  
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Figure 4.21 Perceived Vegetation Condition in the Neighbourhood in the Last Five Years 

 

c. Contribution of anthropogenic activities to landscape changes  

The contribution of certain anthropogenic activities on LULC based on respondents’ perspectives 

across cities was aggregated and scored (Figure 4.22). Farming activities ranked highest in Minna 

(41.6%) and least in Akure (21.6%), while livestock grazing was rated higher in Owerri (41%) and 

lowest in Makurdi (22%). Similarly, bush burning was observed to be more prominent in Owerri 

(40.6%) and Minna (40.1%) compared to Akure (27.6%) and Makurdi (15.6%). Construction and 

developmental activities attracted the highest rating across all cities compared to other drivers, 

with the rating ranging between 40.5 and 53.7% (Figure 4.22). Lumbering/logging as well as 

firewood/charcoal production which are notable drivers of deforestation were ranked highest in 

Minna (35.2% and 53.7%, respectively) followed by Owerri (25.1% and 40.2%, respectively), 

while the lowest rating for lumbering and logging was obtained in Makurdi (12%), and for 

firewood/charcoal production in Akure (21.6%).  
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Climate variability/change ranked higher in Minna (57.6%) relative to Owerri (43.4%) and 

Makurdi (42.4%), with Akure receiving the lowest rating (29%). Poor urban planning legislation 

was rated highest in Akure (53.6%) and Minna (59%), while Owerri and Makurdi were rated at 

37% and 25.1%, respectively. Quarrying/mining, including sand mining, was rated highest in 

Minna 34.7%, followed by Owerri (15.9%), Makurdi (10.8%) and Akure (6%). Rankings varied 

significantly between the four cities, and within and between ecoregions, as confirmed by the 

Kruskal-Wallis test (Table 4.14).  

 

Figure 4.22 Contribution of Anthropogenic Activities to Landscape Changes across Cities 
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d. Drivers of land use changes and agents responsible for changes 

The drivers of land use changes in their communities in the last five years were rated by the 

respondents (Figure 4.23). The expansion of residential areas was perceived to be the greatest 

driver of land use changes, followed by agricultural expansion; industrial expansion received the 

highest relevance in Owerri (33.2%) and Makurdi (23.6%) (Plate II). The expansion of residential 

areas was given considerable prominence across all cities with ratings ranging above 75%. 

Transport development, commercial activities, quarrying/mining, and construction/infrastructural 

development were ranked highly in Makurdi, followed by Akure and Owerri, with the lowest 

ranking observed in Minna. However, the driving forces of these recent changes in land use 

patterns were largely perceived to be local individuals, especially in Akure (82.3%), Makurdi 

(78.2%) and Minna (70.8%). Private investors/estate developers featured prominently in Makurdi 

(36.8%), Owerri (34.3%) and Akure (24.4%), while the role of the government was identified more 

in Makurdi (46.4%) and Minna (27.4%). 

 

Plate II Expansion of Built-up Areas into Green Spaces in Umualum Uratta, Owerri (Google 

Earth, 2023). 
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Figure 4.23 Recent Trends of Land Use Changes Across Cities



140 
 

e. Impact of population growth, in-migration, and economic activities on landscapes 

The adverse effect of population increases and in-migration on landscape changes was perceived 

to be greatest in Makurdi (53.3%), followed by Akure (48.1%), Owerri (29.7%) and Minna 

(27.9%) (Figure 4.24a). A considerable proportion of Akure inhabitants (45.2%) perceived no 

impact of population growth and in-migration on the landscape, while the largest proportion in 

Owerri (50.5%) and Minna (63.1%) recognised the positive impact of this human influx on their 

landscapes. The greatest negative impact of economic activities on plants, animals and the general 

landscape was reported in the Rainforest cities, i.e., Akure (53.3%) and Owerri (45.7%), followed 

by Makurdi (44%) and Minna (32.6%) (Figure 4.24b). Conversely, respondents in the Guinea 

savanna, that is, Makurdi (41.5%) and Minna (59.2%), perceived the impacts of existing economic 

activities as beneficial to organisms and the general landscape. Figures 4.24 a and b suggest that 

population increase (in-migration) and economic activities are perceived as being at least partly 

linked. 

 

Figure 4.24 Perceived Impact of Population Growth and In-migration and Economic Activities 

on the Landscape 
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4.1.3.3   Impact of landscape changes on access to social services  

Access to social services such as portable drinking water (from central sources) and health care 

facilities in terms of distance from the respondents’ residence were perceived not to have changed 

by the largest proportion of the respondents in Akure (76.8% and 75.3%) and Makurdi (60.9% and 

46.1%), whereas in the majority in Owerri (54.8% and 55.6%) and Minna (55.6% and 55.8%) 

perceived an increase in distance to these services, respectively (Figure 4.25). Access to water 

bodies largely remains unchanged in Akure (72.7%), Owerri (46.4%), Makurdi (54.7%) and Minna 

(47.8%), although a considerable proportion of the respondents perceived an increase in distance, 

especially in Owerri (44.7%), Makurdi (30.1%) and Minna (35.7%). Distances to social services 

such as bus stops, main roads, markets and schools were perceived to have increased in Owerri 

and Minna, compared to Akure and Makurdi. This was also the case for forests/grasslands as well 

as farmlands across all cities.  

Finally, the increase in distance between respondents’ residence and the city centre was reported 

more in Owerri (52.5%), followed by Minna (42.9%), Makurdi (30.3%) and Akure (26.2%), while 

the largest groups in Akure (60%) and Makurdi (46.6%) perceived no change in distance. An 

evaluation of the variation in this accessibility index within and between cities is presented in 

Table 4.15. The analysis of variance test yielded a statistically significant variation in terms of 

overall access to social services among the four cities (H(3) = 248.68, p < 0.05), with the pairwise 

differences lying between and within ecological regions, that is, Akure-Minna, Akure-Owerri, 

Makurdi-Minna, Owerri-Makurdi, and Owerri-Minna.   
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Figure 4.25 Changes in Distance from Respondents’ Residence to Certain Social Services 
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Table 4.15 Variation in Access to Social Services between Cities 

Index Kruskal-Wallis Dunn’s post hoc test 

Test statistic 

(H) 

p-value Pairwise comparison Z p-value 

Access 

to social 

services 

248.68 <0.001* Makurdi-Akure -1.091 0.8257 

Minna-Akure -6.801 <0.001* 

Owerri-Akure -14.021 <0.001* 

Minna-Makurdi -5.713 <0.001* 

Owerri-Makurdi -12.933 <0.001* 

Owerri-Minna -7.199 <0.001* 

*Significant at p<0.05  

 

4.1.3.4   Assessing the status of ecosystem services in the neighbourhood 

The proportion of respondents that perceived the air cleansing potential to be degrading included 

31.2% in Akure, 43.1% in Owerri, 44.3% in Makurdi and 11.6% in Minna, while the majority in 

Minna (68.7%) and a few in Owerri (20.8%) and Makurdi (5.4%) perceived an improvement 

(Figure 4.26). The majority in Makurdi (70%) and Minna (69.5%) perceived an improvement in 

water regulation capability. A decline in runoff and flood reduction capacity recorded a high figure 

in Akure (64.4%), followed by Makurdi (48.4%) and Owerri (37.8%), while the majority in Minna 

(58.9%) identified an improvement in this service. Protection against soil erosion follows a similar 

pattern with the highest degradation and improvement observed in Akure and Minna, respectively. 

The degrading capacity to mitigate heat and provide cooling effects received the greatest 

proportion in Makurdi (51%), Owerri (47.5%), Akure (38.2%) and Minna (17.3%). Minna (54.3%) 
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was perceived to offer the highest potential for this service, followed by Owerri (17.5%), Makurdi 

(7.8%) and Akure (4.2%). A considerable proportion of respondents in Akure (48.8%), Owerri 

(55.8%) and Makurdi (49.2%) perceived no changes in the capacity of their environment to reduce 

the effect of extreme weather events (e.g., storms, flooding), while 68.7% in Minna observed an 

improvement. The potential to reduce noise pollution was perceived to be degrading mostly in 

Owerri (49.2%), followed by Makurdi (34.2%), Akure (25.5%) and Minna (18.6%), while 40.6% 

and 10.2% perceived an improvement in Minna and Owerri, respectively. Other ecosystem 

services such as the provision of habitat for wildlife, opportunity for contact with nature, and 

improvement of community appearance and aesthetics were perceived to have undergone more 

degradation in Makurdi and Owerri, while improvement was mostly observed in Minna.   

The mean score for each respondent's rating of the status of the ecosystem in terms of the 

aforementioned services since their arrival in the community was calculated to create an aggregate 

ecosystem status value, which has been subjected to the test of variance between and within cities 

and ecoregions. Kruskal-Wallis test identified a statistically significant difference in the perceived 

ecosystem services status of the four cities in providing ecosystem services (H(3) = 519.54, p < 

0.05), with the post hoc test identifying the pairwise variation between certain cities and ecological 

regions, namely, Akure-Minna, Makurdi-Minna, Owerri-Makurdi, and Owerri-Minna (Table 

4.16).
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Figure 4.26 Perceived Status of Ecosystem Regulating Services in the Neighbourhood 
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Null hypothesis (Ho): There is no significant variation in the perceived status of ecosystem 

regulating services within and between ecoregions. 

Given the results in Table 4.16, the null hypothesis is hereby rejected leading to the conclusion 

that there is a statistically significant variation in the perceived status of ecosystem regulating 

services within and between ecoregions. 

Table 4.16 Variation in Status Ecosystem Services between Cities 

Index Kruskal-Wallis Dunn’s post hoc test 

Test statistic 

(H) 

p-value Pairwise comparison Z p-value 

Status of 

Ecosystem 

services 

519.54 <0.001* Makurdi-Akure 1.805 0.214 

Minna-Akure -18.110 <0.001* 

Owerri-Akure -0.757 1.000 

Minna-Makurdi -19.929 <0.001* 

Owerri-Makurdi -2.572 0.030* 

Owerri-Minna 17.457 <0.001* 

*Significant at p<0.05  

 

4.1.3.5   Effects of household socioeconomic profile on the environmental concern for landscape 

changes 

Concern for the rate of land use changes was mostly recorded in respondents of the Guinea savanna 

in Makurdi at 27.7% (slightly concerned), 42.2% (concerned) and 18.7% (highly concerned), and 

in Minna at 20.2% (slightly concerned), 55.6% (concerned) and 55.8% (highly concerned). 

Conversely, the proportion of individuals that are not concerned was recorded to be largest in 

Akure (43.1%), followed by Owerri (23.6%), Makurdi (11.4%) and Minna (10.1%). Multinomial 

logistic regression model was used to assess the relationship between urban residents’ concerns 
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for landscape changes and their socioeconomic characteristics in individual cities (Table 4.17). 

The model suggests that the socioeconomic status of the Akure inhabitants only accounts for 

42.1% of the factors influencing environmental concerns towards the changing landscape patterns 

in the city. The model further identified these socioeconomic variables to be education attainment, 

occupation, income, and residential building type (Table 4.18). It further indicates that the 

socioeconomic characteristics of the Owerri inhabitants are responsible for only 27.8% of the 

factors influencing environmental concerns towards the urban landscape changes. These 

socioeconomic variables were identified to be gender, household size and residential building type 

(Table 4.18). In Makurdi and Minna, the model suggest socioeconomic characteristics of the 

Makurdi inhabitants are responsible for only 28.6% and 56.6% of the factors influencing 

environmental concerns about urban landscape changes, respectively. These socioeconomic 

variables were recognised to be age, occupation, income, household size, residential building type, 

and main means of cooking (Tables 4.17 and 4.18).  

Null hypothesis (Ho): There is no significant relationship between household socioeconomic 

characteristics and urban resident’s environmental concern for landscape changes. 

Given the above, one can reject the null hypothesis that states that there is no significant 

relationship between household socioeconomic characteristics and urban resident’s environmental 

concern for landscape changes, and conclude that there is a statistically significant relationship 

between household socioeconomic characteristics and urban resident’s environmental concern for 

landscape changes. 
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Table 4.17 Multinominal Logistic Regression Model Outcome for Environmental Concern 

of Respondents and Socioeconomic Characteristics  

Location Model Model fitting criteria Likelihood ratio test R2 

(Nagelkerke) 
AIC BIC -2 Log 

Likelihood 

X2 df Sig. 

Akure Intercept  906.88 918.74 900.88 185.94 78 <0.001* 0.421 

Final 876.94 1197.15 714.94 

Owerri Intercept  758.48 766.43 754.48 106.98 52 <0.001* 0.278 

Final 755.50 970.23 647.50 

Makurdi Intercept  990.93 1002.79 984.93 118.36 90 0.024* 0.286 

Final 1052.56 1420.46 866.56 

Minna Intercept  891.17 903.04 885.17 276.13 90 <0.001* 0.566 

Final 795.04 1163.18 609.04 

*Significant at p<0.05  
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Table 4.18 Likelihood Ratio Tests of Multinominal Logistic Regression for Land Use Concern of Respondents and 

Socioeconomic Characteristics 

Effect Akure Owerri Makurdi Minna 

*Y X2 df p-value X2 df p-value X2 df p-value X2 df p-value 

Age (X1) 10.24 3 0.017* 4.12 2 0.127 1.11 3 0.775 11.09 3 0.011* 

Gender (X2) 4.46 3 0.216 6.82 2 0.033* 5.90 3 0.116 4.08 3 0.253 

Ethnicity (X3) 14.56 12 0.266 12.56 8 0.128 30.33 24 0.174 25.18 24 0.396 

Education (X4) 19.26 3 <0.001* 1.58 2 0.455 4.23 3 0.237 4.69 3 0.196 

Main occupation (X5) 54.67 21 <0.001* 21.44 14 0.091 24.89 21 0.252 69.36 21 <0.001* 

Income (X6) 20.55 3 <0.001* 3.51 2 0.173 7.51 3 0.047* 52.67 3 <0.001* 

Household size (X7) 1.08 3 0.782 6.59 2 0.037* 4.08 3 0.253 8.27 3 0.041* 

Duration of residence 

(X8) 

5.51 3 0.138 2.73 2 0.256 3.74 3 0.291 4.45 3 0.216 

Residential building type 

(X9) 

32.91 18 0.017* 29.17 12 0.004* 23.30 18 0.179 54.53 18 <0.001* 

Main means of cooking 

(X10) 

13.46 9 0.143 11.51 6 0.074 11.57 9 0.239 28.28 9 0.001* 

*Land use concern of respondents (dependent variable)
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4.1.3.6   Effect of population growth/in-migration, economic activities and climate on natural 

landscape status, and the associated socioenvironmental problems 

In assessing the perceived effect of anthropogenic pressures such as population growth/in-

migration and economic activities as well as climate variability/change on the well-being of natural 

landscapes (such as forests and grasslands), multinominal logistic regression model yielded 

Negelkerke R2 values of 0.285 (Akure), 0.199 (Owerri), 0.344 (Makurdi) and 0.363 (Minna) 

(Table 4.19). In Akure and Makurdi, climate variability/change is the only factor that contributed 

28.5% and 34.4% to the perceived changes in the status of the natural landscape, respectively, 

since the contributions of economic activities and climate variability/change were not statistically 

significant (Table 4.20). However, in Owerri and Minna, population growth/in-migration and 

economic activities provided 19.9% and 36.3% of the perceived changes in the status of the natural 

landscape.  

Table 4.19 Multinominal Logistic Regression Model Outcome for Natural Landscape 

Status, Population Growth, Economic Activities and Climate 

Location Model Model fitting criteria Likelihood ratio test R2 

(Nagelkerke) 
AIC BIC -2 Log 

Likelihood 

X2 df Sig. 

Akure Intercept  203.42 211.32 199.42 94.43 24 <0.001* 0.285 

Final 156.99 259.77 104.99 

Owerri Intercept  388.52 396.48 384.52 73.22 24 <0.001* 0.199 

Final 363.30 466.69 311.30 

Makurdi Intercept  425.20 433.12 421.20 124.08 24 <0.001* 0.344 

Final 349.12 451.97 297.12 

Minna Intercept  293.23 301.15 289.23 134.29 24 <0.001* 0.363 

Final 206.94 309.86 154.94 

*Significant at p<0.05 
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Table 4.20 Likelihood Ratio Tests of Multinominal Logistic Regression for Natural 

Landscape Status, Population Growth, Economic Activities and Climate 

Effect Akure Owerri Makurdi Minna 

*Y X2 df p-

value 

X2 df p-value X2 df p-value X2 df p-value 

Population 

increase and in-

migration (X1) 

5.97 8 0.651 30.61 8 <0.001* 14.99 8 0.059 29.14 8 <0.001* 

Economic 

activities (X2) 

14.06 8 0.080 32.01 8 <0.001* 9.85 8 0.276 25.79 8 0.010* 

Climate 

variability/change 

(X3) 

20.58 8 0.08* 3.54 8 0.896 76.10 8 <0.001* 15.36 8 0.052 

*Status of natural landscape (dependent variable) 

 

The top four problems in Akure were identified to be soil erosion, poor waste management, air 

and water pollution, and flooding (Figure 4.27). Predominant problems indicated in Owerri were 

road networks, air, water and noise pollution, soil erosion, and flooding. Major problems in 

Makurdi were soil erosion, air and water pollution, deforestation, and poor waste management. 

Predominant problems in Minna were lack of potable water, deforestation, air and water pollution, 

soil erosion, and poor enforcement of planning laws and regulations.  
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Figure 4.27 Textural and Word Cloud Analysis of Socioenvironmental Challenges Confronting the Cities
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4.1.4 The trend and pattern of climatic changes in cities of the Rainforest and Guinea 

savanna ecoregions of Nigeria 

This section presents the fourth objective of this study which aimed to assess the trend and pattern 

of climatic (precipitation, minimum temperature and maximum temperature) changes in cities of 

the ecoregions between 1981 and 2022. 

4.1.4.1   Rainfall variability 

The summary of the annual rainfall time series is presented in Table 4.21. Long-term means of the 

locations include 1490 mm (Akure), 2339 mm (Owerri), 1242 mm (Makurdi) and 1138 mm 

(Minna). The highest variability was observed in the Rainforest cities, that is, Akure (11.46%) and 

Owerri (10.44%) followed by Makurdi (10.28%) and Minna (9.52%). Even though Akure and 

Owerri belong to the same ecological region, the latter receives more rainfall annually while the 

former shows greater variability.  

Table 4.21 Summary Statistics of Annual Rainfall for Akure, Owerri, Makurdi and Minna 

between 1981 and 2022 

Location Mean and Standard 

Deviation (mm) 

Minimum Maximum CV (%) 

Akure 1490.31 ± 170.8 1203.26 1934.29 11.46 

Owerri 2338.64 ± 244.1 1728.66 2821.33 10.44 

Makurdi 1242.08 ± 127.7 905.30 1482.37 10.28 

Minna 1138.31 ± 108.3 751.13 1328.92 9.52 

 

The standardised anomaly and annual rainfall for Akure, Owerri, Makurdi and Minna between 

1981 and 2022 are presented in Figures 4.28 and 4.29. Rainfall pattern follows similar patterns in 

cities of the same ecological region. For instance, dryness was largely experienced in both Akure 
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and Owerri in 1981-1983 and 2013-2019, although Akure experienced a dry condition between 

2000 and 2006. In the Guinea savanna locations, wetness and dryness occurred cyclically with the 

dry period more pronounced in 1982-1990 and 2013-2021.  

The lowest rainfall amount was experienced in Akure in 2001 (1203 mm), Owerri in 1983 (1729 

mm), Makurdi in 2013 (905 mm) and Minna in 2013 (751 mm) (Figure 4.28). The year with the 

maximum rainfall amount in Akure is 1995 (1934 mm), Owerri in 1999 (2821 mm), Makurdi in 

1999 (1482 mm) and Minna in 1994 (1329 mm). 

 

Figure 4.28 The Standardised Anomaly of Rainfall for Akure, Owerri, Makurdi and Minna 

between 1981 and 2022 
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The serial correlation test performed on the rainfall time series before trend analysis revealed no 

serial correlation in the data (Figure 4.30). The Mann-Kendall trend analysis revealed no 

statistically significant trend in rainfall pattern for the locations at p < 0.05 significant level (Table 

4.22). Sen’s slope estimator showed Akure, Owerri and Minna a possible annual rainfall increment 

of about 0.70 mm, 3.40 mm and 0.66 mm, while Makurdi showed an annual decline rate of about 

0.34 mm. 

 

 

Figure 4.29 Rainfall Variability in Akure, Owerri, Makurdi and Minna between 1981 and 2022 
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Figure 4.30 Serial Correlation for Rainfall Series for Akure, Owerri, Makurdi and Minna 

 

Table 4.22 Rainfall Trend Analysis and Rate of Change between 1981 and 2022 

Location Z-Value Sen's Slope p-value Tau 

Akure 0.196 0.697 0.8453 0.022 

Owerri 0.824 3.394 0.4101 0.089 

Makurdi -0.217 -0.343 0.8284 -0.024 

Minna 0.433 0.659 0.665 0.048 

 

4.1.4.2   Minimum temperature variability  

The highest value of minimum temperature was observed in Owerri (22.5oC) and Makurdi 

(22.3oC), followed by Minna (21.9oC) and Akure (20.8oC) (Table 4.23). In Akure, the lowest 

temperature of 19.9oC was recorded in 1992 and 1993 (Figure 4.31). These years also had the 
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lowest value (21.6oC) in Owerri. The lowest values were observed in 1989 for Makurdi (21.5oC) 

and Minna (21.0oC). The highest variability was observed in cities of the Rainforest, that is Akure 

(2.15%) and Owerri (1.89%), compared to the Guinea savanna counterparts, that is, Makurdi 

(1.50%) and Minna (1.43%).  

 

Table 4.23 Summary Statistics of Minimum Temperature in Akure, Owerri, Makurdi and 

Minna between 1981 and 2022 

Location Mean and Standard 

Deviation (oC) 

Minimum Maximum CV (%) 

Akure 20.8 ± 0.45 19.9 21.8 2.15 

Owerri 22.5 ± 0.42 21.6 23.4 1.89 

Makurdi 22.3 ± 0.33 21.5 23.0 1.50 

Minna 21.9 ± 0.31 21.0 22.5 1.43 

 

Serial autocorrelation was detected for the minimum temperature series of Akure, Owerri and 

Makurdi (Figure 4.32). Minimum temperature shows an upward trend that is statistically 

significant at p < 0.05 significant level for Owerri, Makurdi and Minna (Table 4.24). Based on 

Sen’s slope estimator, the rate of temperature increase was identified to be 0.007oC (Akure), 

0.011oC (Owerri), 0.014oC (Makurdi) and 0.011oC (Minna). 
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Figure 4.31 Minimum Temperature Pattern for Akure, Owerri, Makurdi and Minna between 1981 and 2022 
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Figure 4.32 Serial Correlation for Minimum Temperature Series for Akure, Owerri, Makurdi 

and Minna 

Table 4.24 Minimum Temperature Trend Analysis and Rate of Change between 1981 and 

2022 

Location Z-Value Sen's Slope p-value Tau 

Akure 1.494 0.007 0.1352 0.163 

Owerri 2.482 0.011 0.0131 0.271 

Makurdi 3.628 0.014 0.0002 0.395 

Minna 3.078 0.011 0.0021 0.331 

 

4.1.4.3   Maximum temperature variability  

Maximum temperature follows a similar pattern with minimum temperature (Table 4.25; Figure 

4.33). The values were higher for cities of the Guinea savanna (33.1oC and 33.7oC) than those of 

the Rainforest (30.5oC and 31.5oC). At the same time, the latter recorded the highest variability, 
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that is, 1.35% (Akure) and 1.27% (Owerri), compared to the former, that is, 0.91% (Makurdi) and 

0.99% (Minna). The highest temperature for Akure was observed in 2021 (31.4oC), Owerri in 2020 

and 2021 (32oC), Makurdi in 1987 (33.7oC) and Minna in 1987 (34.5oC). 

Table 4.25 Summary Statistics of Maximum Temperature in Akure, Owerri, Makurdi and 

Minna between 1981 and 2022 

Location Mean and Standard 

Deviation (oC) 

Minimum Maximum CV (%) 

Akure 30.5 ± 0.41 29.6 31.4 1.35 

Owerri 31.0 ± 0.39 30.2 32.0 1.27 

Makurdi 33.1 ± 0.30 32.4 33.7 0.91 

Minna 33.7 ± 0.33 32.9 34.5 0.99 

 

 

Figure 4.33 Maximum Temperature Pattern for Akure, Owerri, Makurdi and Minna between 

1981 and 2022 
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Serial autocorrelation in the maximum temperature dataset was observed for the four locations 

(Figure 4.34). The trend analysis test demonstrated a statistically significant upward trend for the 

four locations at p < 0.05 significant level (Table 4.26). Estimated annual rates of temperature 

increment of 0.018oC, 0.019oC, 0.014oC and 0.011oC were observed for Akure, Owerri, Makurdi 

and Minna, respectively, based on Sen’s slope estimator. In addition, the highest increment rate 

was observed in the Rainforest cities.  

 

Figure 4.34 Serial Correlation for Maximum Temperature Series for Akure, Owerri, Makurdi 

and Minna 

Table 4.26 Maximum Temperature Trend Analysis and Rate of Change between 1981 and 

2022 

Location Z-Value Sen's Slope p-value Tau 

Akure 3.628 0.018 0.0003 0.395 

Owerri 3.695 0.019 0.0002 0.402 

Makurdi 3.695 0.014 0.0002 0.402 

Minna 2.572 0.011 0.0101 0.280 
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Null hypothesis (Ho): There is no significant trend in the temporal pattern of climatic variables 

within and between the ecoregions. 

Given the results in Tables 4.24 and 4.26, the null hypothesis can thereby be rejected, and one can 

conclude that there is a statistically significant trend in the temporal pattern of climatic variables 

within and between the ecoregions because a statistically significant upward trend was observed 

for maximum temperature in all the cities. 

4.1.5 Understanding the impact of future changes in landscape patterns on the landscape 

resilience of the sustainability of ecosystem regulating services 

This section presents this study's fifth research objective, which seeks to assess the impact of future 

changes in landscape characteristics on landscape resilience and the distribution and sustainability 

of ecosystem regulation services within and between the cities of the two ecoregions under specific 

climatic scenarios. This section also evaluates and discusses the overall impact of changes in 

landscape structure on the ecosystem on the supply of ecosystem services in the juxtaposition with 

other climes.  

4.5.1.1   Current and predicted future land use scenarios 

The spatial and temporal patterns of the current (2022) and simulated future (2042) LULC 

scenarios are presented in Figures 4.34 and 4.35. A comparison between these LULC scenarios 

revealed that the proportion of built-up areas might increase from 17.88% to 24.51% in Akure, 

23.73% to 29.72% in Owerri, 34.02% to 35.03% in Makurdi, and 13.29% to 14.94% in Minna 

(Figure 4.35). This suggests that built-up areas might expand by 6.63% (Akure), 5.99% (Owerri), 

1.01% (Makurdi), and 1.20% (Minna) with the Rainforest cities showing a higher tendency for 

more rapid urban growth. Agricultural land is expected to decline in the Rainforest cities from 
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39.58% to 33.39% in Akure, 38.34% to 27.48% in Owerri but increase in the Guinea savanna cities 

from 25.68% to 25.74% in Makurdi, and 78.43% to 80.18% in Minna. This amounts to changes 

of -6.19% (Akure), -10.86% (Owerri), 0.06% (Makurdi) and 1.75% (Minna).  

 

Figure 4.35 Current (2022) and Future (2042) LULC Pattern for Akure, Owerri, Makurdi and 

Minna 
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However, vegetation cover is predicted to increase in the Rainforest cities from 40.0% to 40.54% 

in Akure and 37.03% to 42.84% in Owerri, and a decline in the Guinea savanna cities from 31.35% 

to 29.78% in Makurdi and 3.21% to 0.85% in Minna. This suggests that between 2022 and 2042 

vegetation cover might change by 0.54% (Akure), 5.81% (Owerri), -1.57% (Makurdi) and -2.36% 

(Minna). 

 

Figure 4.36 Temporal Changes in LULC between 2022 and 2042 

4.1.5.2   Current and predicted future landscape structure 

The temporal changes in landscape structural characteristics under the current and future LULC 

scenarios are presented in Figure 4.37. From 2022 to 2042, patch density (PD) is predicted to 

increase from 20.3 ha-1 to 22.4 ha-1 in Akure, 24.9 ha-1 to 26.1 ha-1 in Owerri, 38.8 ha-1 to 41.6 ha-
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1 in Makurdi, and 17.4 ha-1 to 37.5 ha-1 in Minna. This demonstrates tendencies towards increased 

magnitude of landscape fragmentation in all cities of the ecoregions. Largest shape index (LSI) is 

predicted to increase from 99.02 to 104.70 in Akure, 107.26 to 108.34 in Makurdi, and 63.74 to 

108.75 in Minna, but to decline from 75.88 to 71.49 in Owerri; thus, a more complex landscape 

pattern in terms of patch configuration is expected in Akure, Makurdi and Minna. The degree of 

landscape compaction or aggregation is expected to decrease in Akure, Makurdi and Minna but 

increase in Owerri since the contagion index (CONTAG) changed from 47.9 to 46.7 in Akure, 

46.7 to 48.8 in Owerri, 35.6 to 35.1 in Makurdi, and 71.0 to 66.07 in Minna. The degree of 

landscape diversity is expected to increase in the future period in Akure, Makurdi and Minna but 

decrease in Owerri since Shannon’s diversity index (SHDI) identified a change from 1.14 to 1.16 

in Akure, 1.13 to 1.09 in Owerri, 1.35 to 1.36 in Makurdi, and 0.60 to 0.63 in Minna. 

 

Figure 4.37 Current and Future Landscape Structural Characteristics at the Landscape Level 
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4.1.5.3   Current and predicted future carbon storage 

The spatial pattern and quantity of carbon storage under the current LULC scenario and the 

predicted future LULC are presented in Figure 4.38 and Table 4.27. The main difference in the 

spatial distribution of carbon storage between the two scenarios is evident in the spread of areas 

having less than 2.0 tons of carbon, especially within the 10–20 km radius. However, carbon 

storage is expected to decline between 2022 and 2042 by 3.32% in Akure, 0.60% in Makurdi, and 

20.02% in Owerri, but appreciate by 3.47% in Owerri (Table 4.27).  

Table 4.27 Quantity of Carbon Stored and Sequestered between 2022 and 2042 

Location Year Carbon storage 

(tons) 

Sequestration 

(2022-42) 

Sequestration 

(%) (2022-42) 

Akure (RF) 2022 12,359,186.53 -410,195.77 -3.32 

2042 11,948,990.76 

Owerri (RF) 2022 4,966,944.31 172,343.75 3.47 

2042 5,139,288.06 

Makurdi (GS) 2022 3,908,612.56 -23,393.85 -0.60 

2042 3,885,218.71 

Minna (GS) 2022 4,992,513.3 -999,286.33 -20.02 

2042 3,993,226.97 
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Figure 4.38 Spatial Distribution of Carbon Storage in 2022 and 2042 

4.1.5.4   Current and predicted future heat mitigation 

The spatial pattern heat mitigation index under the current LULC scenario and the predicted future 

LULC are presented in Figure 4.39. Between 2022 and 2042, the density of areas having less than 

0.20 HMI is expected to increase within the 10–25 km radius of the urban core in all cities 
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suggesting a reduction in the potential of metropolitan areas and suburbs to provide a cooling effect 

and mitigate heat stress due to continuous landscape transformation. Urban cooling capacity and 

heat mitigation potential decline appreciably in all cities with a corresponding increase in air 

temperature (Table 4.28). On average, HMI decreased by 2.63% (0.76-0.74) in Akure, 6.68% 

(0.71-0.71) in Owerri, 1.67% (0.60-0.59) in Makurdi, and 8.70% (0.92-0.84) in Minna (Table 

4.28).  

 

Table 4.28 Summary of Urban Cooling and Heat Mitigation Model for 2022 and 2042 

Location Year Cooling 

capacity 

Heat Mitigation 

Index (HMI) 

Average 

Temperature (oC) 

Akure (RF) 2022 0.50 0.76 25.0 

2042 0.48 0.74 25.1 

Owerri (RF) 2022 0.44 0.76 24.9 

2042 0.46 0.71 25.1 

Makurdi (GS) 2022 0.39 0.60 25.0 

2042 0.39 0.59 25.0 

Minna (GS) 2022 0.37 0.92 24.2 

2042 0.33 0.84 24.3 
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Figure 4.39 Heat Mitigation Index (HMI) for 2022 and 2024 

 

4.1.5.5   Current and predicted future stormwater retention 

Figure 4.40 presents the spatial distribution of stormwater retention under the current LULC 

scenario and the predicted future LULC under the same meteorological conditions as 2022. 
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Between 2022 and 2042, a slight reduction is predicted in the proportion of areas having a 

stormwater retention capacity of more than 1000 m3 in the Rainforest cities (Akure and Owerri). 

In the Guinea savanna cities, a reduction in stormwater retention capacity, especially with areas of 

601 m3 – 800 m3 having a value reduction to 400 m3 – 600 m3 is also predicted. On average, 

stormwater volume is expected to decline in all cities, with the highest decline expected in Owerri 

(3.76%) and Minna (3.72%), followed by Makurdi (0.35%) and Akure (0.15%). Retention 

coefficient, which is the ratio of the retained stormwater to total precipitation received in a given 

area, showed the highest tendency to decline in Owerri (4.69%) followed by Minna (2.82%) and 

Akure (1.64%) while Makurdi remains unchanged.  

Table 4.29 Summary of Stormwater Retention Model for 2022 and 2042 

Location Year Retention 

Volume (m3/yr) 

Δ Retention 

Volume (m3/yr) 

Retention 

Coefficient 

Δ 

Retention 

Coefficient 

(%) 

Akure (RF) 2022 834.85 -1.26 (-0.15%) 0.61 -1.64 

2042 833.59 0.60 

Owerri (RF) 2022 1184.89 -44.60 (-3.76%) 0.64 -4.69 

2042 1140.29 0.61 

Makurdi (GS) 2022 663.38 -2.30 (-0.35%) 0.59 0.00% 

2042 661.08 0.59 

Minna (GS) 2022 727.86 -27.09 (-3.72%) 0.71 2.82% 

2042 700.77 0.69 
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Figure 4.40 Spatial Distribution of Stormwater Retention Volume in 2022 and 2042 
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4.1.5.6   Correlation between landscape structure and ecosystem regulating services 

The possible impact of changes in landscape structure on ecosystem regulating services was 

assessed using correlation analysis, the outcome of which is presented in Figure 4.41. The analysis 

shows that patch density (PD), a measure of landscape fragmentation, correlates negatively with 

carbon storage (r = -0.58, p < 0.05), urban heat mitigation service (r = -0.63, p < 0.05), and 

stormwater retention (r = -0.30, p > 0.05). Similarly, largest shape index shows a negative 

association with carbon storage (r = -0.31, p < 0.05), urban heat mitigation service (r = -0.39, p < 

0.05), and stormwater retention (r = -0.59, p < 0.05), suggesting a decline in the supply of these 

ecosystem regulating services with an increasing magnitude of landscape complexity. CONTAG, 

which assesses the degree of landscape aggregation yielded a positive correlation with these 

services, indicating that compact landscapes tend to support the delivery of these ERS. SHDI, 

which shows negative associations with carbon storage (r = -0.29, p < 0.05), urban heat mitigation 

service (r = -0.82, p < 0.05), and stormwater retention (r = -0.22, p < 0.05), suggest that the delivery 

of ERS tends to decline with an increase magnitude of landscape diversity.  

Null hypothesis (Ho): There is no significant correlation between urban landscape structure and 

ecosystem regulating services. 

Given the result in Figure 4.41, one can reject the below stated null hypothesis at 95% confidence 

level and conclude that there is a statistically significant relationship between urban landscape 

structure and ecosystem regulating services. 
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Figure 4.41 Correlation between Landscape Structure and Ecosystem Regulating Services 

4.2 Discussion 

4.2.1 The spatiotemporal pattern of urban landscape changes in Rainforest and Guinea 

savanna ecoregions 

Considerable changes were observed in urban landscapes between 1986 and 2022. All cities 

studied experienced urban expansion, with the most substantial growth noted in Makurdi (Guinea 

Savanna) and Akure (Rainforest) (Plate I). These findings align with those of Bakoji et al. (2020), 

who highlighted unprecedented urban growth in Makurdi at the expense of agricultural land and 

natural vegetation between 2004 and 2014. The increase in agricultural land around all cities was 
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primarily at the expense of natural vegetation (Table 4.1). For example, the proportion of 

agricultural land in Minna rose from 40.37% to 47.69% between 2002 and 2014 (Figure 4.2). This 

observation corroborates the results of Arowolo and Deng (2018), who documented a roughly 5% 

increase in cultivated land from 2000 to 2010, previously consisting of shrubland, forests, and 

grasslands. Altogether, this development is another proof of an increased demand for farming and 

agricultural products following urban growth (Zubairu et al., 2019). Although water bodies and 

bare land comprised a limited proportion of the landscape in all the cities, temporal variations were 

observed in their spatial extent. In Owerri and Makurdi, the extent of water bodies is largely 

influenced by seasonal alluvial sand deposits, farming, and sand mining activities in floodplains. 

This pattern has also been reported in the riparian corridors of some rivers in the Rainforest regions 

of southwestern Nigeria (Fashae and Obateru, 2023). 

Previous studies have highlighted the unplanned growth pattern among cities in the Rainforest 

ecological region of Nigeria (Olajuyigbe et al., 2015; Owoeye and Ibitoye, 2016; Makinde and 

Agbor, 2019; Fashae et al., 2020). In this study, a continuous increase in urban growth was noted 

in cities from both the Rainforest and Guinea savanna ecoregions. Owoeye and Ibitoye (2016) 

reported that in Akure (Rainforest), built-up areas expanded towards the city's northern and eastern 

regions between 1985 and 2002, driven by the establishment of government ministries and 

residential areas (GRA), which led to an influx of residents. This spatial development could be 

confirmed in the presented study. Urban expansion was further fostered by the presence of major 

highways leading to the northern parts of the country as well as the availability of cheap land with 

good topographic characteristics that favour human settlement. Population influx into Akure was 

orchestrated by the administrative and political prominence of Akure as the capital of Ondo State 
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and by the discovery of bitumen in the state in recent decades, which has attracted investors and 

other individuals in the quest for a better livelihood (Owoye and Ibitoye, 2016). 

In Owerri (Rainforest), urban expansion persists at an annual rate of 0.35%. Echebima et al. (2019) 

predicted that Owerri and its environment might lose their entire vegetal cover in the next two 

decades, given the current rate of expansion in built-up areas. Persistent sand mining on major 

rivers in Owerri has been identified as the main cause of the deterioration of riparian vegetation as 

well as accelerated soil erosion (Obi et al., 2023). Echebima et al. (2019) noted that the riparian 

corridors of rivers in Owerri have been considerably depleted due to human occupation and sand 

mining. In Makurdi (Guinea savanna), the rapid urbanisation rate has been associated with the 

establishment of federal and military institutions, which has encouraged increased infrastructural 

development and immigration into the city (Bakoji et al., 2020). Odiji et al. (2022) identified 

cropland expansion, overgrazing, deforestation, and fuel wood harvesting for energy production 

as major drivers of land use changes in Benue State (within which Makurdi is located). 

In the Guinea savanna ecoregion, Minna is characterised by limited vegetation cover compared to 

Makurdi, given the former’s closer proximity to the Sudan–Sahelian region. Thus, the 

transformation of bare land as well as the depletion of vegetation cover were notable landscape 

changes that occurred between 2002 and 2022. Reasons for this include rural–urban migration, 

commercial activities, especially along major roads, shifting cultivation, extensive livestock 

grazing, bush burning, and lumbering for both domestic and commercial purposes (Zubairu et al., 

2019; Bashir et al., 2022). The drastic expansion of built-up areas in Minna and the corresponding 

decline in vegetation cover were largely encouraged by developmental activities initiated by the 

government, individuals, and real estate developers (Zubairu et al., 2019).   
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4.2.2 Effects of landscape changes on urban ecosystem regulating services in the Rainforest 

and Guinea savanna ecoregions of Nigeria 

4.2.2.1   Carbon storage and sequestration  

In two decades, notable landscape changes in the Rainforest and Guinea savanna cities were 

orchestrated by the increasing expansion of built-up areas and agricultural lands at the expense of 

vegetation cover (Figure 4.1). A considerable impact on the vegetation status accompanies this 

situation, leaving areas within a 20 km buffer of the city core with NDVI values less than 0.20 

(Figure 4.8). Deforestation has played a role in this regard due to the expansion of agricultural 

areas and human settlements to sustain the rising demand for food, shelter and other provisioning 

services, typical of an urban populace (Adelisardou et al., 2022). However, vegetation conditions 

showed improvement between the 20 km and 30 km buffer in Rainforest cities in 2022 compared 

to 2002, as NDVI maximum values increased by 0.13 (Akure) and 0.3 (Owerri). This can be 

accounted for by agricultural practices ranging from bush burning, shifting cultivation and 

rotational bush fallowing, each of which fluctuates annually in areal extent (Nair et al., 2021; 

Aweto, 2021).  

The spatial pattern of carbon storage and sequestration follows closely the LULC pattern with 

vegetation and agricultural lands beyond a 15 km radius of the cities showing substantial carbon 

storage potential compared to the urban core (Figures 4.9 and 4.10). Studies have shown that urban 

areas are characterised by limited carbon storage of less than 0.8 tons ha-1 (Adelisardou et al., 

2022). Despite the improvement in vegetation health observed in certain parts of the Rainforest 

cities, a persistent depletion of the carbon sink, rather than storage, was observed in all cities, 

amounting to an annual loss of approximately 0.92% (0.14 million tons), 1.01% (0.07 million 

tons), 0.43% (0.02 million tons) and 1.69% (0.13 million tons) in Akure, Owerri, Makurdi and 
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Minna, respectively, between 2002 and 2022. This is similar to the findings of Adelisardou et al. 

(2022) who reported a loss of about 1.5 million tons from carbon sinks between 2000 and 2019 

under a tropical agroecological condition in Iran, due to the displacement of vegetation covers by 

urban and agricultural lands. 

Findings further revealed that the spatially varying effect of landscape changes on carbon 

sequestration is more pronounced in the Guinea savanna cities (adjusted R2 = 43.93%–65.06%) 

compared to the Rainforest counterparts (adjusted R2 = 25.93%–34.19%) (Figure 4.11; Table 4.6). 

Such spatial variation has been reported by Li et al. (2021), who identified a varying spatial 

relationship between NDVI and carbon density in the Loess plateau area of China due to disparity 

in vegetation distribution and climatic conditions. In evaluating carbon storage in a mixed 

agricultural landscape of northern Iran, Lahiji et al. (2020) noted that the spatial variation in carbon 

sequestration is largely a function of segments of the land shared under various LULC types. Given 

the fact that forest and grassland ecosystems are biological eliminators of atmospheric carbon 

dioxide through the assimilation into the physiological and edaphic systems in the form of biomass 

(Babbar et al., 2021), certain studies have noted that this trend can be reversed to enhance carbon 

sequestration through the conversion of grassland to semi-shrubby and agricultural lands to forests 

(Poeplau and Don, 2013; Liang et al., 2017). Imran and Din (2021) demonstrated that reducing 

the emission of greenhouse gases, such as carbon dioxide, through the conservation and expansion 

of existing forests to sequester more carbon, is a realistic way to mitigate the impacts of global 

warming and climate change in developing countries. The transition of agricultural land to forest 

is not a feasible solution in the study locations due to land ownership problems and the unwavering 

need to alleviate food insecurity among the teeming urban populace (Obateru et al., 2023b; 

Achichi et al., 2023). This problem can be circumvented through the encouragement of taungya 
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farming system, which involves the cultivation of tree species and arable crops on the same field 

under regulated agroforestry conditions (Nigussie et al., 2021).  

4.2.2.2   Urban heat mitigation services and stormwater retention 

The capacity to provide cooling and heat mitigation effects is extremely low (< 0.20) at the core 

of the cities, especially with a 5 km buffer in 2002, which had extended to about 10 km–15 km in 

2022 (Figures 4.12 and 4.13). These islands of urban warming, with low cooling capacity and heat 

mitigation, are associated with the rapid expansion of built-up lands, stripping the landscape of 

vegetation cover and the attendant cooling and heat mitigation benefits. Urban expansion amplifies 

atmospheric pollution, alters rainfall characteristics in and around urban areas, modifies flora and 

fauna diversity and abundance, and exacerbates global warming (Makinde and Agbor, 2019; 

Fashae et al., 2020; Kadaverugu et al., 2021). The perimeters of the cities beyond 15 km retain 

substantial potential for climate regulation since the HMI index mostly ranged above 0.61. On 

average, the heat mitigation index (HMI), which measures the potential of urban green spaces to 

provide cooling impacts, declined between 2002 and 2022 by 0.13 (Akure), 0.10 (Owerri), 0.13 

(Makurdi) and 0.50 (Minna), with a corresponding increase in average temperature from >24oC in 

all cases to about 25oC in the extreme case (Table 4.7). Zawadzka et al. (2021) noted that a 0.10 

change in HMI leads to 0.76oC in land surface temperature in a tropical region of southeast Asia. 

The model identified an average air temperature of over 24oC in all cases, and according to the 

findings of Makinde and Agbor (2019), temperature values above 24oC are too high for human 

physiologic comfort in the tropics, suggesting the existence of an urban warming effect. The 

microclimate of cities is influenced by the intricate interactions between meteorological conditions 

(such as air temperature, humidity, insolation, and wind speed) and urban morphological 

characteristics (such as building form and orientation, urban density, road networks, and canopy 
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geometry) (Ronchi et al., 2020). The impervious nature of urban surfaces depletes the provision 

of ERS by encouraging flooding during heavy downpours while built-up areas increase human 

physiologic discomfort and the risk of heat stress (Manoli et al., 2019).  

The positive effect of vegetation cover on heat mitigation is highlighted by the occurrence of 

locally strong GWR R2 values in the eastern half of Akure, the southwestern and northeastern 

segments of Owerri, the northern segment of Makurdi, and the southeastern segment of Minna 

(Figure 4.14). These are areas with considerable vegetation cover and strong NDVI values. The 

GWR yielded a final model with a stronger contribution of landscape changes (NDVI) on HMI in 

the Rainforest cities (adjusted R2 = 67.99%–91.80%) compared to the Guinea savanna counterparts 

(adjusted R2 = 50.50%–35.60%) (Table 4.9), reflecting the potential of the luxuriant vegetal cover 

of Rainforest ecological regions to enhance evapotranspiration and atmospheric cooling. Thus, 

Zawadzka et al. (2021) noted the impact of evaporative cooling of vegetal cover and water in 

tropical environments with abundant precipitation and advocated for the maximisation of shade 

and ventilation by incorporating vegetation and water bodies into the urban layout.  Consistent 

with this, studies have demonstrated that about 33% of urban landscapes should be vegetated with 

trees to reduce the air temperature by 1oC (Ng et al., 2012; Kadaverugu et al., 2021). 

 

4.2.3 Nature and drivers of urban landscape changes in the Rainforest and Guinea savanna 

ecoregion of Nigeria 

The decrease in NDVI between 2002 and 2022 suggest a growing extent of the built-up areas and 

a disproportionate decline in vegetation health (Figures 4.1 and 4.8). This is consistent with the 

findings of Olorunfemi et al. (2020a) who reported a decline in NDVI in southwestern Nigeria, 
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due to anthropogenic encroachment and agricultural expansion. Makurdi and Minna are 

characterised by lower NDVI values due to their geographical situation in the savanna zone, which 

is characterised by markedly lower annual precipitation compared to its Rainforest counterpart 

(Faniran et al., 2023). Irrespective of ecological situations, the spread of built-up lands, as typified 

by NDBI, occurs at the expense of other landscape components such as forest cover, grasslands 

and agricultural lands. One exception blurring the interpretation of increased NDBI may be caused 

by dynamic sand deposits along the river in Makurdi. These deposits, as bare soil in general, are 

spectrally similar to urban areas, in particular under dry conditions (Conrad et al., 2015). However, 

the described development substantiates the perception of more than 54% of the respondents of all 

cities who reported a degrading status of natural forest and grassland vegetation in the last five 

years (Figure 4.21). More than 67% of respondents from the four cities identified residential land 

use as the predominant land use in their neighbourhoods (Figure 4.23). Following this, commercial 

activities were accorded precedence in Akure, Owerri, and Makurdi, while farming activities took 

precedence in Minna. The rapid expansion of the built-up areas due to increased residential and 

commercial activities promotes the degradation of vegetal cover in communities as reported by 

over 54% of the respondents in the four cities (Figures 4.22 and 4.23), largely because urban areas 

in Nigeria offer job opportunities and a means of sustenance other than farming and exploitation 

of natural resources, but which necessarily require land for housing (Adenle et al., 2022). This 

observation supports the findings of Kindu et al. (2015) in the south-central highlands of Ethiopia 

who identified the potentiality of major roads and district markets in driving land use changes. 

This is a common trend in sub-Saharan African countries, including Tanzania (Msofe et al., 2019), 

Ethiopia (Gessesse and Bewket, 2014; Bekere et al., 2023) and Malawi (Munthali et al., 2019). 

Similarly, Liu et al. (2016) noted that increased economic investments in urban centres often foster 
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the demand for housing and industrial spaces to support the workforce, consequently limiting 

vegetation coverage to the outskirts of the city. Thus, natural landscapes would continually decline 

as urbanisation intensifies in developing countries (Liu et al., 2016). 

The contribution of anthropogenic activities to landscape changes differs considerably among the 

cities (Figure 4.22). Construction/developmental activities were reportedly the principal drivers of 

landscape changes in all cities. Farming activities and livestock were identified as the dominant 

drivers of landscape changes in Minna compared to other cities, demonstrating the city's pre-

eminence for food production. Overgrazing has been ranked a stronger propeller of land use 

change compared to cultivation due to the prevalence of livestock grazing in protected areas in the 

Guinea savanna region of Nigeria (Adenle et al., 2022). In Nigeria, urbanisation increases the 

intensity of farming activities in adjoining rural areas due to food and material demands and 

promotes land use change and land degradation (Olorunfemi et al., 2020a; Fashae et al., 2020). 

Gessesse and Bewket (2014) reported that local farmers in central Ethiopia are forced to cultivate 

marginal and extensively degraded lands due to the rising demand for food and fuelwood from the 

rapidly expanding urban population. Gessesse and Bewket (2014) also highlighted the prevalence 

of unrestricted grazing systems for livestock production as a notable driver of land cover change 

and land degradation.  

Bush burning was perceived to be prevalent in Owerri and Minna. Poor land management practices 

such as bush burning, deforestation and logging exacerbate land degradation in Nigeria (Arowolo 

and Deng, 2018). Frequent bush burning often devastates ecosystem resilience by impairing soil 

quality and altering the regeneration sequence of extant species (Martínez et al., 2011). Agents of 

deforestation such as lumbering/logging and firewood/charcoal production were both ranked 

highest in Minna and Owerri, compared to Akure and Makurdi. The use of firewood/charcoal for 
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domestic cooking is often informed by poverty, inadequate electricity coverage and supply, and 

the increasing cost of alternative energy sources such as cooking gas (Munthali et al., 2019). 

Previous studies have reported similar findings in Malawi where erratic power supply caused the 

dependence of urban and rural inhabitants on fuelwood culminating in drastic loss of forest 

vegetation (Gamula et al., 2014). Similarly, indiscriminate removal of forest trees for fuelwood 

production and construction materials has been reported as a leading cause of landscape changes 

in central Ethiopia (Gessesse and Bewket, 2014). 

Climate variability was least regarded as a factor of landscape change in Akure (29%) with other 

cities obtaining ratings greater than 42%. The multinomial regression model reported that climate 

variability/change had a variance contribution of 28.5% (Akure) and 34.4% (Makurdi) to the 

changing status of natural landscapes. In a socioeconomic survey conducted by Msofe et al. (2019) 

among farmers in southeastern Tanzania, climate variability, characterised by rising temperatures 

and reduced rainfall, has resulted in the drying up of wetlands and water resources. Additionally, 

there has been a decline in biogeochemical processes that support crop productivity. Akure and 

Minna inhabitants reported the highest cases of poor urban planning legislative enforcement, while 

quarrying/mining, especially sand mining, was most reported in Minna and Owerri. The perceived 

trends of landscape changes in the last five years differ across cities, although residential expansion 

takes precedence in all cases (Figure 4.23). Other major trends in order of importance include 

commercial activities, transport development and agricultural expansion in Akure; industrial 

expansion, commercial activities and transport development in Owerri, commercial activities, 

transport development and agricultural expansion in Makurdi; and commercial activities, 

agricultural expansion and transport development in Minna. Individuals driving these changes 

were reported to be predominantly local people in the communities who desire to have their own 
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houses and escape from the rising cost of house rent. Private investors/real estate developers are 

active agents in this regard as they have enormously influenced the housing provision landscape 

in recent times in Nigeria. This pattern reflected the increasing urban population and in-migration 

due to the administrative and commercial functions of these cities. A considerable proportion of 

the respondents in Akure and Makurdi recognised the negative impacts of landscape changes due 

to population increase and in-migration. Most respondents of Owerri (50.5%) and Minna (63.1%) 

appreciated the benevolent impacts while Akure and Owerri reported the highest negative impact 

of economic activities on plants, animals and the general landscape.  

 

4.2.4 Perceived impact of landscape changes on social and ecosystem services in the 

Rainforest and Guinea savanna ecoregions of Nigeria 

The impact of landscape changes on social services varies considerably across cities (Figure 4.25; 

Table 4.15), although Owerri and Minna recorded the highest perception of decreasing access to 

portable drinking water, healthcare facilities, bus stops, main roads, markets and schools, and 

respondents’ residences, from the city centre. Dizdaroglu (2015) noted that rapid urban expansion 

causes a reduction in the proximity between housing, jobs and other destinations due to 

automobile-oriented development patterns, which are characterised by challenges such as high 

vehicular flow, walkways and footpaths blocked by parked cars, disconnected street systems and 

unsafe street environments. However, the observation of this study is at variance with the findings 

of Giraldo et al. (2012) who reported increased proximity between residential units and social 

services such as schools and stores as housing density increased in Mexico, due to the shortening 

of walking routes. 
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The results highlighted a substantial disparity in ecosystem service status between cities and 

ecoregions, reflecting the combined effects of development levels and ecological variation (Figure 

4.26; Table 4.16). A considerable proportion of the respondents across the cities reported a 

perceived decline in air purification capabilities and soil erosion protection. Cities like Akure, 

Owerri, and Makurdi experienced notable degradation in several areas, including runoff and flood 

reduction, heat mitigation, noise control, wildlife habitat, opportunities for nature interaction, and 

community aesthetics (Figure 4.26). The NDVI distribution indicated a reduction in vegetation 

health across all cities, which is linked to diminished air purification and carbon sequestration 

abilities. Loss of vegetation increases land surface temperatures, impacting solar radiation and heat 

storage, and exacerbating the urban heat island effect. This phenomenon has been documented in 

southwestern Nigeria by Olorunfemi et al. (2020a) and Fashae et al. (2020). Dobbs et al. (2011) 

found that trees can lower temperatures by up to 1.5°C in urban areas. Similarly, Guan et al. (2024) 

reported a significant decline in habitat quality and carbon sequestration in the inner urban areas 

of Jinghong city, while water yield and soil retention decreased in the urban periphery between 

2000 and 2020 due to rapid urbanisation in southwestern China. Urban areas, with their paved 

surfaces, hinder rainwater infiltration and groundwater recharge, leading to increased surface 

runoff and pollutant loads entering drainage systems (Dizdaroglu, 2015). This exacerbates soil 

erosion, flooding, surface water contamination, and the degradation of riparian and aquatic 

habitats, as noted by Fashae et al. (2019) and Fashae and Obateru (2021) in rapidly urbanising 

cities of southwestern Nigeria. Globally, MA (2005) reported a 32% increase in atmospheric 

carbon dioxide concentrations since 1750 (from about 280 to 376 parts per million in 2003), 

primarily due to increased fossil fuel combustion and land use changes. Urbanisation-related 

transportation activities often lead to increased emissions of air pollutants and noise pollution, 
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adversely affecting human health, particularly respiratory conditions and psychological issues 

(Dizdaroglu, 2015). 

The study findings also revealed that urban residents face pressing socio-environmental challenges 

related to land use, including air and water pollution, flooding, soil erosion, poor waste 

management, and deforestation (Figure 4.26). These issues are expected to persist and worsen as 

residential and commercial areas continue to encroach on vegetated landscapes. Future projections 

suggest that climate change will intensify extreme weather events and urban heat stress 

(Kourdounouli and Jönsson, 2020). Consequently, urban residents are likely to encounter ongoing 

ecological challenges such as pollution, thermal stress, atmospheric contamination, increased 

indoor energy use, heightened surface runoff and flooding, and diminished water quality. With the 

global urban population projected to rise from 55% in 2015 to 68% in 2018 (Wang et al., 2022), 

the urban environment's ability to regulate climate, control runoff and flooding, and mitigate 

pollution and climate change faces significant threats (Olorunfemi et al., 2020b). 

 

4.2.5 The changing climate of the cities of the Rainforest and Guinea savanna ecoregions 

of Nigeria 

The study explores the climatic variability and trends in Nigeria's Rainforest and Guinea savanna 

ecological regions, revealing significant differences in long-term mean rainfall amounts. The 

analysis of rainfall patterns across Akure, Owerri, Makurdi, and Minna reveals intriguing patterns 

and discrepancies within and between ecological regions. The study also reveals the variability in 

extreme rainfall events, with the lowest rainfall amounts recorded in various years across the 

studied locations (Figures 4.28–4.31). Statistical analyses, including the serial correlation test and 
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Mann-Kendall trend analysis, provide valuable insights into long-term trends in rainfall patterns. 

However, the absence of serial correlation suggests independence among rainfall data points 

(Adedeji et al., 2018). Sen’s slope estimator reveals potential annual rainfall increments in Akure, 

Owerri, and Minna, contrasting with a slight decline observed in Makurdi. Research conducted by 

Eludoyin and Adelekan (2013), Buba et al. (2017), Areola and Fasona (2018), and Amadi et al. 

(2019) offers valuable insights into the spatiotemporal trends of rainfall characteristics in Guinea 

savanna of Nigeria. Collectively, these studies enhance our understanding of climatic variability 

and trends across Nigeria's varied ecological zones. For instance, Buba et al. (2017) analyse 

spatiotemporal rainfall patterns in the Guinea Savanna and advocate for climate policies to address 

the emerging risks posed by climate variability. Deforestation, increasing agricultural output, and 

urban expansion may all have an impact on regional climate dynamics by altering air moisture 

content, evapotranspiration rates, and surface albedo, according to Deng et al. (2019).  

This study reveals significant variations in minimum temperature values across cities, with Owerri 

and Makurdi exhibiting the highest maximum minimum temperatures (Figure 4.31–4.34). 

Temporal analysis reveals specific years with exceptionally low minimum temperatures, such as 

1992 and 1993 in Akure and 1989 in Makurdi and Minna. The highest variability is observed in 

Rainforest cities, particularly Akure and Owerri, compared to Guinea-Savanna cities such as 

Makurdi and Minna. The yearly temperature rise varies from 0.007°C (Akure) to 0.014°C 

(Makurdi), indicating a modest but detectable warming trend. Eludoyin et al. (2014) found that 

the seasonal distribution of thermal conditions revealed that in the wet season, more places faced 

thermal stress in the north, whereas in the dry season, more areas experienced thermal stress in the 

south.  
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This study found that maximum temperature values were generally higher in the Guinea savanna, 

with cities like Akure and Owerri experiencing higher variability. Temporal analysis revealed 

specific years with exceptionally high maximum temperature values, highlighting the variability 

in these cities over time. Statistically significant increases in maximum temperatures were 

recorded across all locations, highlighting a persistent warming trend throughout the study period. 

The greatest rate of increase was noted in the Rainforest cities, underscoring the impact of local 

climatic factors on temperature variability. Buba et al. (2017) identified that elevated temperatures 

in Ilorin are largely influenced by the seasonal effects of intertropical discontinuity (ITD) and 

related factors. 

4.2.6 Future resilience of urban landscape structural patterns and the sustainability of 

ecosystem regulating services 

Patch density (PD) increased in the four cities in 1986-2014 and 2022-2042, suggesting a rising 

trend of landscape fragmentation and heterogeneity over time (Figures 4.7 and 4.37). However, 

PD was observed to reduce in Akure and Makurdi in 2014 and 2022 (Figure 4.9), possibly due to 

instances of bush fallowing for soil fertility restoration (Aweto, 2021). This indicates the potential 

for landscape restoration, as suggested by the results of Li et al. (2021a) who highlighted the need 

to enhance landscape restoration efforts by minimising habitat fragmentation. For the vegetation 

class, PD increased between 1986 and 2002 in Akure, Owerri, and Makurdi; it decreased between 

2002 and 2022 in Akure, Makurdi and Minna but increased in Owerri, while ED generally declined 

between 2014 and 2022 in all study locations, according to Li et al (2021b), another sign of 

landscape restoration. An increase in PD and LSI between 2022 and 2042 typifies the possibility 

of increased habitat fragmentation (Figure 4.37). Landscapes are expected to be less fragmented 
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when patches are well-connected (Gergel, 2005; Yohannes et al., 2021). The loss of natural 

vegetation due to urban or agricultural expansion results in diminished capacity for several 

ecosystem services, including disease control, pest regulation, pollination, and water quality 

regulation, while simultaneously increasing the demand for these services (Mitchell, 2021). This 

is illustrated by the negative correlation observed between landscape fragmentation metrics (PD 

and LSI) and ecosystem regulating services (carbon storage, heat mitigation, and stormwater 

retention) in Figure 4.41. 

LSI is projected to rise in all cities between 2022 and 2042, indicating expected increases in 

landscape heterogeneity and complexity due to ongoing fragmentation (Figure 4.37). As 

fragmentation becomes more severe, patches tend to become more irregular, leading to decreased 

patch compactness within the landscape (Liu et al., 2017). CONTAG, a metric of landscape 

compaction, showed varying degrees across cities, with the Guinea savanna demonstrating distinct 

differences compared to other regions (Table 4.3; Figures 4.7 and 4.37). These variations in 

CONTAG suggest uneven development patterns, warranting further investigation. Increased 

landscape complexity and aggregation have been found to positively impact water quality 

regulation, pollination, pest control, and aesthetic value (Mitchell, 2021). However, other studies 

have highlighted a negative correlation between ecosystem provisioning services (such as 

biodiversity and crop yield) and increasing PD, landscape complexity, and fragmentation (Lamy 

et al., 2016; Liu et al., 2020; Chen et al., 2021). Yushanjiang et al. (2018) also reported a negative 

relationship between CONTAG and overall ecosystem services. 

Table 4.3 indicates that the landscape structural characteristics (LSI, CONTAG, and SHDI) of 

Makurdi and Minna (both in the Guinea savanna ecoregion) exhibit distinct patterns, whereas 

pronounced variations were less evident across cities from different ecological regions. Lamy et 
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al. (2016) observed that landscape structure accounts for 66%, 41%, and 32% of the variation in 

carbon sequestration, deer hunting, and soil organic matter, respectively, but only 5%, 4%, and 3% 

of the variation in water quality, tourism, and summer home value in an agricultural region of 

Southern Québec, Canada. This case study from the temperate region underscores the necessity to 

explore the implications of landscape structural variation on specific ecosystem services in tropical 

environments such as Nigeria. 

The persistent urban growth patterns in these cities have been driven by incompatible land use 

transformations and uncontrolled encroachment into vegetated landscapes. These landscape 

changes reflect the emergence of new physical and socioeconomic systems, which include 

disruptions to ecological functions, increased pressure on infrastructure, and alterations to the 

urban planetary boundary layer, significantly affecting local and regional climates (Polydoros et 

al., 2018). Such transformations often result in a cascade of environmental impacts, including 

reduced biodiversity, impaired ecosystem functionality, and altered energy balances. The 

modification of thermal and hydrological properties through the removal of vegetation, coupled 

with increased anthropogenic heat emissions due to urban population growth, often compromises 

the supply of ecosystem-regulating services and exacerbates the urban heat island effect (Fashae 

et al., 2020). This study observed a growing trend in landscape diversity (SHDI), with significant 

variations within the Guinea savanna ecoregion. Liu et al. (2020) and Chen et al. (2021) 

demonstrated that increased landscape diversity can enhance the provision of ecosystem regulating 

services (such as carbon sequestration, climate moderation, runoff and erosion control, and water 

and air regulation) and cultural services (such as aesthetic values, recreation, and ecotourism) 

while potentially reducing the provision of average supporting services (such as biogeochemical 
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fluxes). However, this increase in diversity may not always translate into improved ecosystem 

function if it is accompanied by high levels of fragmentation and degradation. 

4.3 Summary of Findings 

The summary of the findings of this study is presented as follows: 

The study revealed the highest rate of built-up area expansion over 36 years (1986-2022) was 

observed in Makurdi (0.74% year-1), followed by Akure (0.42% year-1), Owerri (0.35% year-1), 

and Minna (0.32% year-1). Akure and Makurdi witnessed the greatest replacement of vegetation 

cover by agricultural land while the transformation of agricultural land to built-up areas was 

greatest in the Rainforest cities (Akure and Owerri). Landscape fragmentation, typified by patch 

density (PD), showed an increasing trend for built-up class in cities but with fluctuations for 

Makurdi and Minna, and an almost uniform pattern for Owerri. Landscape aggregation (AI) for 

the built-up class slightly decreased between 1986 and 2022 for Akure and Owerri while Makurdi 

and Minna underwent an increment, showing increasing densification of the built-up landscape in 

these cities.  

Using biophysical models, findings show that the capacity of all ecoregions to maintain ecosystem 

regulating services (ERS) (such as carbon storage and sequestration, urban cooling and heat 

mitigation service, and stormwater retention) declined appreciably, especially with a 5 – 10 km 

buffer of the urban core, between 2002 and 2022. For instance, the carbon sink diminishes by 

18.35% (2.78 million tons), 21.95% (1.40 million tons), 8.60% (0.37 million tons) and 33.83% 

(2.55%) in Akure, Owerri, Makurdi and Minna, respectively, within the spate of this two decades. 

Urban heat mitigation service (HMI) diminished by 13% (Akure), 10% (Owerri), 13% (Makurdi) 
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and 5% (Minna). An island of urban warming is characteristic of areas within a 5 km buffer in 

2002, which spread to about 10 km in 2022.  

A household questionnaire survey involving 1552 participants was used to corroborate the results 

from the LULC analysis and ERS biophysical modelling with over 54% of the respondents in all 

cities reporting a decline in landscape ecological health. The main drivers of landscape changes 

were perceived to be residential expansion, agricultural practices, transport and infrastructural 

development, and fuelwood production. Climate variability/change reportedly makes a 28.5%–

34.4% (Negelkerke R2) contribution to the changing status of natural landscapes in Akure and 

Makurdi as modelled by multinomial logistic regression, while population growth/in-migration 

and economic activities reportedly account for 19.9%– 36.3% in Owerri and Minna.  The highest 

rainfall variability was observed in the Rainforest cities, that is, Akure (11.46%) and Owerri 

(10.44%) followed by Makurdi (10.28%) and Minna (9.52%), although no statistically significant 

rainfall trend was observed in all cities. However, statistically significant upward trends in 

maximum temperature were identified in all four cities with an increment rate of 0.018oC yr-1, 

0.019oC, yr-1, 0.014oC yr-1, and 0.011oC yr-1, and the highest rate observed within the Rainforest. 

Moreover, future land use prediction between 2022 and 2042 suggested that built-up areas might 

expand by 6.63% (Akure), 5.99% (Owerri), 1.01% (Makurdi), and 1.20% (Minna) with the 

Rainforest cities showing a higher tendency for more rapid urban growth. Landscape structure 

metrics, especially patch density, exhibit tendencies towards increased magnitude of landscape 

fragmentation in all cities of the ecoregions in the future. Under the current climatic condition 

(2022) as well as the current and future land use scenarios, ERS is expected to decline between 

2022 and 2042 at varying degrees across cities. A negative correlation was identified between 
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landscape fragmentation, landscape complexity, and the capacity to provide ERS; ERS also tends 

to decline with an increasing level of landscape diversity.  
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CHAPTER FIVE 

5.0        CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

Understanding the dynamics of urban landscape structure and their effects on ecological health is 

crucial for developing sustainable urban management strategies in the context of rapid urbanisation 

and climate change. This study operates on the premise that the unique characteristics of ecological 

zones—such as climate, vegetation traits, and soil conditions—can influence trends and patterns 

in landscape dynamics, potentially leading to either the enhancement or decline of ecosystem 

regulating services amidst urbanisation, varied agricultural practices, and climate change. Thus, 

the study employs machine-learning-based geospatial methods, ecological metrics, biophysical 

models, and socioeconomic techniques to examine changes in urban landscape structure and their 

impact on ecosystem regulating services within the Rainforest and Guinea savanna regions of 

Nigeria. The study's theoretical framework is grounded in the Patch-Corridor-Matrix Model from 

landscape ecology and the ecosystem services framework outlined in the 2005 Millennium 

Ecosystem Assessment. 

This study recognised that the increasing trend of built-up expansion and patch density (PD) 

indicates a rising magnitude of landscape fragmentation and heterogeneity over time with varying 

implications for urban ecological functioning. Findings showed considerable landscape changes, 

informed by the expansion of human settlements and agricultural lands at the expense of vegetation 

cover, especially within a 5–10 km radius of urban cores in both ecoregions. This has caused a 

depletion of carbon stock, a decline in the capacity of urban landscapes to retain and infiltrate 

stormwater, and a reduction in the cooling and heat mitigation capacity of the urban spaces, along 
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with a rise in average air temperature and the spread of an island of warming at the urban cores. 

The outcome of geospatial and biophysical models corroborates the findings of the socioeconomic 

survey wherein participants recognized that the expansion of residential and commercial areas, 

agricultural practices (such as mixed cropping systems, bush burning, and overgrazing), transport 

and infrastructural development, and fuelwood production as the principal drivers of landscape 

changes. Urban residents and private investors, compelled by housing needs and rising rental costs, 

actively contribute to the conversion of green spaces to residential areas, orchestrating a decrease 

in access to social services such as portable drinking water, health care facilities, bus stops, main 

roads, markets and schools, and housing. Cities of the Rainforest demonstrated the highest concern 

for landscape and environmental changes, compared to their Guinea savanna counterparts. 

Demographic factors influence this decision across cities to varying degrees; factors such as age, 

occupation, income, and residential building type, played a greater role in Akure, Owerri and 

Minna. 

Moreover, this study showed that the dwindling capacity for ecosystem regulating services is the 

effect of landscape changes in all cities, irrespective of ecological setting. Findings indicated that 

variations in developmental processes and activities have a considerable impact on altering 

landscape characteristics and ecosystem services than ecological disparity. This highlights the 

intricate interactions of factors influencing landscape changes within and across Nigeria's 

ecological regions, thus necessitating city-specific sustainable urban management measures to 

manage landscape transformation and address prevailing environmental challenges such as 

atmospheric pollution, water contamination, flooding, soil erosion, inadequate waste management, 

and deforestation. 
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5.2 Recommendations 

Based on the major findings and conclusion of this study, three categories of recommendations 

have been made.  

5.2.1 Recommendations for policy improvement 

This study provides baseline information for understanding the spatial and temporal dynamics of 

urban land use patterns and landscape structure, and their interaction with ecological processes 

and ecosystem regulating services in two distinct ecoregions of Nigeria. It highlights the evolving 

nature of urban landscapes and emphasises the necessity for city-specific ecological management 

and sustainable urban development. This includes informed planning for both rural and urban land 

use to address prevalent environmental issues such as air and water pollution, flooding, soil 

erosion, poor waste management, and deforestation. The insights gained from this study can also 

aid stakeholders in raising awareness and addressing the challenges posed by increasing landscape 

fragmentation, while striving to maintain the functionality and integrity of urbanising ecosystems 

despite ongoing urbanisation, land use changes, and anticipated climate impacts. Relevant 

stakeholders include federal and state ministries of urban planning, lands and housing, and 

environment, as well as federal, state, and local environmental protection agencies such as the 

National Environmental Standards and Regulations Enforcement Agency (NESREA), which 

oversees the enforcement of environmental laws, guidelines, policies, standards, and regulations 

in Nigeria. Based on the study's findings, particularly regarding the ecological conditions of 

various cities, it is recommended that these stakeholders adopt city-specific ecological 

management strategies, which are detailed in Table 5.1 in order of priority.
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Table 5.1a City-Specific Recommendations to Tackle Ecological Challenges 

S/N Akure Owerri Makurdi Minna 

1.  Enhance agricultural practices 

- Implement sustainable 

farming methods such as 

precision farming and smart 

agriculture to minimise the 

impact of agriculture on 

ecological health. 

- Promote agroforestry to 

maintain soil health and 

palliate deforestation 

Regulate livestock grazing 

- Implement grazing 

management practices to 

control the high impact of 

livestock grazing. 

- Promote rotational 

grazing and provide 

designated grazing areas 

to reduce land 

degradation. 

 

Promote Sustainable 

Farming 

- Encourage adopting 

sustainable farming 

practices to mitigate 

the impact of farming 

activities. 

- Provide training and 

support for farmers on 

soil conservation and 

water management 

techniques. 

Sustainable Agricultural 

Practices 

- Implement policies to 

regulate farming 

activities, which have 

the highest impact. 

- Encourage practices 

like crop rotation, 

agroforestry, and 

conservation tillage. 

2.  Control construction and 

development 

- Enforce stricter urban 

planning and development 

regulations to manage 

unabated landscape 

transformation. 

- Develop green building 

codes and encourage the 

integration of green spaces 

in land occupation. 

- Develop comprehensive 

land use plans that include 

zoning of residential, 

commercial, and green 

areas 

Manage Bush Burning 

- Increase public education 

on the negative effects of 

bush burning. 

- Encourage using 

alternative land 

management practices, 

such as mulching and 

cover cropping. 

Control Bush Burning 

- Launch campaigns to 

reduce the prevalence 

of bush burning. 

- Support using 

alternative land-

clearing methods and 

promote firebreaks to 

prevent uncontrolled 

fires. 

Control Livestock Grazing 

- Develop and enforce 

grazing management 

plans to reduce the 

impact of livestock 

grazing. 

- Provide designated 

grazing lands and 

promote sustainable 

grazing practices. 
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Table 5.1b City-Specific Recommendations to Tackle Ecological Challenges (continuation) 

S/N Akure Owerri Makurdi Minna 

3. Reduce bush burning 

- Initiate community 

awareness schemes on 

the environmental 

impacts of bush 

burning. 

- Execute alternative 

land-clearing methods 

and support the 

adoption of controlled 

burning practices. 

Improve Ecosystem Services 

- Enhance urban green spaces 

to improve the city's capacity 

to mitigate heat and provide 

cooling effects. 

- Develop a programme to 

increase tree planting and the 

maintenance of urban parks. 

- Address the high perception 

of degrading air cleansing 

potential by increasing 

vegetation cover and 

regulating industrial 

emissions. 

Improve Water Regulation 

- Enhance the city’s water 

regulation capabilities, 

perceived to be 

improving by the 

majority. 

- Implement watershed 

management practices 

and restore natural water 

bodies. 

Improve Urban 

Planning Legislation 

- Strengthen urban 

planning and zoning 

laws to prevent 

haphazard 

development. 

- Develop 

comprehensive 

urban development 

plans that 

incorporate 

environmental 

sustainability. 

4. Improve air quality 

- Address the perception 

of degrading air 

cleansing potential by 

planting more trees 

and green belts around 

the city. 

- Monitor and regulate 

vehicular and 

industrial emissions.  

Monitor Construction Activities 

- Enforce strict regulations on 

construction and development 

activities. 

- Promote the use of 

sustainable construction 

materials and practices. 

Boost Ecosystem Services 

- Increase efforts to 

protect and restore 

natural habitats to 

improve ecosystem 

services, such as air 

cleansing and cooling 

effects. 

- Promote community 

involvement in 

environmental 

conservation 

programmes. 

Manage Bush Burning 

- Raise awareness 

about the 

environmental 

impacts of bush 

burning. 

- Introduce controlled 

burning techniques 

and alternative land 

management 

practices. 
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This study underscores the declining ability of urban landscapes across Nigeria and, more broadly, 

West Africa, to sequester carbon, manage stormwater runoff, and alleviate heat stress. This decline 

is primarily due to the increasing replacement of vegetation cover with impervious surfaces and 

the expansion of agricultural areas. This trend contradicts global, regional, and local efforts aimed 

at combating deforestation, habitat degradation, global warming, and widespread climate change. 

Consequently, the findings of this study provide a crucial opportunity to track spatial and temporal 

shifts in urban ecosystem services, which are vital for understanding how human activities 

contribute to climate change and for evaluating the effectiveness of current climate mitigation 

strategies at both local and regional levels. These strategies include the Kyoto Protocol, Nigeria’s 

commitment to the 2015 Paris Agreement, and the submission of the Nationally Determined 

Contribution (NDC) to the UN Framework Convention on Climate Change (UNFCCC) in 2021 

(NDC, 2021). The NDC outlines Nigeria's ambitions and plans to transition to a low-carbon 

economy by significantly reducing greenhouse gas emissions and promoting the adoption of 

renewable energy sources. 

5.2.2 Recommendations for performance improvement 

A community-based appraisal of the interaction between urban landscape changes and ecosystem 

regulating services as conducted in this study is significant to urban and regional planners, 

ecologists, conservationists, environmental managers, and climate change scientists. For instance, 

this study revealed that demographic factors (such as age, occupation, income, and residential 

building type) influence the landscape and ecological concerns of the residents at varying 

magnitudes across urban centres. This demonstrates that urban inhabitants understand the 

ecological workings of the urban space and are aware of how their activities can drive landscape 

changes to improve or degrade ecological health. Therefore, urban inhabitants need to be viewed 
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as important stakeholders when making effective decisions related to sustainable urban 

environmental management and planning. It is impossible to stop landowners from developing 

their lands for various purposes and halt new land acquisition. However, effective enforcement of 

urban planning regulations, urban afforestation, and sustainable waste management systems, 

would decelerate the decline in ecosystem health.  

Additionally, offering environmental education to land owners to incorporate green infrastructure, 

such as urban afforestation at a specified level during land development, will foster awareness and 

commitment towards landscape and ecosystem protection among urban residents. This can be 

implemented through local sensitisation and awareness campaigns conducted by educational 

institutions, community organisations, and labour unions to inform urban inhabitants about the 

risks and consequences of not following planning regulations, thereby supporting the UN 

Sustainable Development Goal 11, geared towards sustainable cities and communities. 

Furthermore, improving ecosystem regulating services can be achieved through urban 

afforestation and sustainable peri-urban agricultural practices, such as the taungya agroforestry 

system. Carbon sequestration can be enhanced by expanding the implementation of the United 

Nations REDD+ (Reducing Emissions from Deforestation and Forest Degradation) programme at 

local and community levels. Launched in Nigeria in 2012, this initiative focuses on addressing 

deforestation, desertification, and land degradation, as well as expanding and preserving the 

national forest estate and ensuring the sustainability of biodiversity and ecosystem services. 

5.2.3 Suggestions for further research 

Urban ecosystems remain a burgeoning field of interest for landscape ecologists, geographers, 

urban planners, and environmental managers as they seek to deepen their understanding of urban 
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ecosystem services from geographical, biophysical, economic, and sociocultural perspectives. 

This study contributes to these disciplines by systematically integrating geospatial, ecological, 

biophysical, and socioeconomic techniques to explore the dynamics of urban landscape patterns 

and their impacts on ecological health, with examples drawn from varied environmental and urban 

contexts. 

The biophysical models used to assess ecosystem regulating services largely rely on LULC raster 

layers and empirical models. Consequently, the accuracy and reliability of these assessments are 

heavily influenced by the quality of LULC classification and the parameterisation and sensitivity 

of the empirical models. To improve the effectiveness of these ecosystem service evaluations, 

future research could benefit from using higher spatial resolution imagery and validating the 

outputs of biophysical models with field data collected locally from the study areas. 

Moreover, future research should focus on socio-ecological assessments, investigating the current 

and projected spatial patterns of urban ecosystem services within ecological regions. This should 

include the use of higher spatial resolution datasets and specialised platforms for monitoring 

ecosystem services. This will necessitate the investigation of specific socio-environmental 

factors—such as population density, migration patterns, local agricultural practices, land 

ownership systems, and poverty levels —that drive landscape heterogeneity at local, urban, and 

regional levels.  

5.3 Contribution to the Body of Knowledge 

The study revealed an increasing pattern of urban expansion, with the highest rate observed in 

Makurdi (0.74% year⁻¹), followed by Akure (0.42% year⁻¹), Owerri (0.35% year⁻¹), and Minna 

(0.32% year⁻¹) between 1986 and 2022. Landscape fragmentation (edge density) showed an 
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increasing trend for the built-up class, rising from 6.41 m/ha to 44.80 m/ha. The proportion of the 

built-up class exhibited positive correlations with the largest patch index (r = 0.86, p < 0.05) and 

aggregation (r = 0.39, p < 0.05), indicating a concurrent rise in landscape densification as urban 

expansion persists. Additionally, ecosystem services such as carbon storage diminished by 8.60%–

33.83% across all cities between 2002 and 2022, particularly within a 5–10 km buffer of the urban 

core. Carbon storage was projected to decline by 3.32% in Akure, 0.60% in Makurdi, and 20.02% 

in Owerri between 2022 and 2042, but increase by 3.47% in Minna. Accuracy validation and 

assessment for all reported models showed results exceeding 70%. These findings imply that 

differences in developmental processes and activities have a greater impact on shaping landscape 

characteristics and ecosystem services than ecological settings. City-specific ecological 

management strategies integrated with informed urban and regional landscape conservation and 

planning were proposed. 
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APPENDICES 

Appendix A Confusion Matrix and Accuracy Assessment of Akure LULC Classification 

Year LULC class Built Agric Veg Bare  Water total User (%) 

Akure 

1986 

Built 10 0 0 0 0 10 100 

Agric 0 18 0 0 0 18 100 

Veg 0 2 18 0 0 20 100 

Bare 0 0 0 12 0 12 100 

Water 0 0 0 0 8 8 100 

total 10 20 18 12 8 68  

Producer (%) 100 90 100 100 100  97.06 

Validation overall accuracy = 97.06% 

Kappa coefficient = 96.23% 

  

2002 Built 12 0 0 0 0 12 100 

Agric 0 10 0 0 0 10 100 

Veg 0 0 22 0 0 22 100 

Bare 2 0 0 24 0 26 92.31 

Water 0 0 0 0 4 4 100 

total 14 10 22 24 4 74  

Producer (%) 85.71 100 100 100 100  97.30 

Validation overall accuracy = 97.30% 

Kappa coefficient = 96.38% 

  

2014 Built 32 0 0 0 0 32 100 

Agric 5 6 1 0 0 12 50.00 

Veg 0 2 35 0 0 37 94.59 

Bare 0 1 0 2 0 3 66.67 

Water 0 0 1 0 4 5 80.00 

total 37 9 37 2 4 89  

Producer (%) 86.49 66.67 94.59 100 100  88.76 

Validation overall accuracy = 88.76% 

Kappa coefficient = 83.00% 

  

2022 Built 25 1 0 1 0 27 92.59 

Agric 0 10 2 0 0 12 83.33 

Veg 0 1 11 0 0 12 91.67 

Bare 0 0 0 9 0 9 100 

Water 0 0 0 0 9 9 100 

total 25 12 13 10 9 69  

Producer (%) 100 83.33 84.62 90 100  92.75 

Validation overall accuracy = 92.75% 

Kappa coefficient = 90.46% 

  

Built = Built-up areas; Agric = Agricultural land; Veg = Vegetation; Bare = Bare land; Water = Water 

bodies; User = User accuracy; Producer = Producer accuracy. 
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Appendix B Confusion Matrix and Accuracy Assessment of Owerri LULC Classification 

Year LULC class Built Agric Veg Bare  Water total User (%) 

Owerri 

1986 

Built 7 0 0 1 0 8 87.50 

Agric 0 5 1 0 0 6 83.33 

Veg 0 0 17 0 0 17 100 

Bare 0 0 0 5 0 5 100 

Water 0 0 0 0 12 12 100 

total 7 5 18 6 12 48  

Producer (%) 100 100 94.44 83.33 100  95.83 

Validation overall accuracy = 95.83% 

Kappa coefficient = 94.48% 

  

2002 Built 5 0 0 0 0 5 100 

Agric 0 7 0 0 0 7 100 

Veg 0 0 7 0 1 8 87.50 

Bare 0 0 0 5 0 5 100 

Water 0 0 0 0 5 5 100 

total 5 7 7 5 6 30  

Producer (%) 100 100 100 100 83.33  96.67 

Validation overall accuracy = 96.67% 

Kappa coefficient = 95.80% 

  

2014 Built 7 2 1 1 0 11 63.64 

Agric 0 5 0 0 0 5 100 

Veg 0 0 6 0 0 6 100 

Bare 0 0 0 6 0 6 100 

Water 0 0 0 0 2 2 100 

total 7 7 7 7 2 30  

Producer (%) 100 71.43 85.71 85.71 100  86.67 

Validation overall accuracy = 88.67% 

Kappa coefficient = 82.86% 

  

2022 Built 8 0 0 1 0 9 88.89 

Agric 0 5 0 0 0 5 100 

Veg 0 0 4 0 0 4 100 

Bare 1 0 0 1 0 2 50.00 

Water 0 1 0 0 6 7 85.71 

total 9 6 4 2 6 27  

Producer (%) 88.89 83.33 100 50.00 100  89.88 

Validation overall accuracy = 92.31% 

Kappa coefficient = 89.88% 

  

Built = Built-up areas; Agric = Agricultural land; Veg = Vegetation; Bare = Bare land; Water = Water 

bodies; User = User accuracy; Producer = Producer accuracy.  
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Appendix C Confusion Matrix and Accuracy Assessment of Makurdi LULC Classification 

Year LULC class Built Agric Veg Bare  Water total User (%) 

Makurdi 

1986 

Built 8 0 0 0 0 8 100 

Agric 2 12 0 0 0 14 85.71 

Veg 0 0 4 0 0 4 100 

Bare 0 0 0 14 0 14 100 

Water 0 0 0 0 12 12 100 

total 10 12 4 14 12 52  

Producer (%) 80.00 100 100 100 100  96.15 

Validation overall accuracy = 96.15% 

Kappa coefficient = 95.05% 

  

2002 Built 9 0 0 0 0 9 100 

Agric 1 2 0 0 0 3 66.67 

Veg 0 0 6 0 0 6 100 

Bare 0 0 0 3 0 3 100 

Water 0 0 0 0 7 7 100 

total 10 2 6 3 7 28  

Producer (%) 90.00 100 100 100 100  96.43 

Validation overall accuracy = 96.77% 

Kappa coefficient = 95.81% 

  

2014 Built 9 0 0 0 0 9 100 

Agric 0 9 0 0 0 9 100 

Veg 0 0 12 0 0 12 100 

Bare 0 0 0 24 0 24 100 

Water 0 3 0 0 6 9 66.67 

total 9 12 12 24 6 63  

Producer (%) 100 75.00 100 100 100  95.24 

Validation overall accuracy = 95.24% 

Kappa coefficient = 93.71% 

  

2022 Built 12 0 0 0 0 12 100 

Agric 0 9 0 0 0 9 100 

Veg 0 3 15 0 0 18 83.33 

Bare 0 0 0 15 0 15 100 

Water 0 0 0 0 18 18 100 

total 12 12 15 15 18 72  

Producer (%) 100 75.00 100 100 100  95.83 

Validation overall accuracy = 95.83% 

Kappa coefficient = 94.75% 

  

Built = Built-up areas; Agric = Agricultural land; Veg = Vegetation; Bare = Bare land; Water = Water 

bodies; User = User accuracy; Producer = Producer accuracy. 
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Appendix D Confusion Matrix and Accuracy Assessment of Minna LULC Classification 

Year LULC class Built Agric Veg Bare  Water total User (%) 

Minna 

1986 

Built 5 2 0 2 0 9 55.55 

Agric 1 51 4 0 0 56 91.07 

Veg 0 2 29 0 0 31 93.55 

Bare 0 1 0 8 0 9 88.89 

Water 0 0 0 0 4 4 100 

total 6 56 33 10 4 109  

Producer (%) 83.33 91.07 87.88 80.00 100  88.99 

Validation overall accuracy = 88.99% 

Kappa coefficient = 82.70% 

  

2002 Built 28 2 0 0 0 30 93.33 

Agric 0 41 7 0 0 48 85.42 

Veg 0 0 40 0 0 40 100 

Bare 0 0 0 1 0 1 100 

Water 0 0 1 0 6 7 85.71 

total 28 43 48 1 6 126  

Producer (%) 100 95.35 83.33 100 100  92.06 

Validation overall accuracy = 92.06% 

Kappa coefficient = 88.55% 

  

2014 Built 8 2 0 1 0 11 72.73 

Agric 0 33 0 1 0 34 97.06 

Veg 0 0 14 0 0 14 100 

Bare 0 1 0 6 0 7 85.71 

Water 0 0 0 0 7 7 100 

total 8 36 14 8 7 73  

Producer (%) 100 91.67 100 75.00 100  93.15 

Validation overall accuracy = 93.15% 

Kappa coefficient = 90.18% 

  

2022 Built 7 0 0 0 0 7 100 

Agric 0 10 1 0 0 11 90.91 

Veg 0 1 9 0 0 10 90.00 

Bare 0 0 0 9 0 9 100 

Water 0 0 0 0 4 4 100 

total 7 11 10 9 4 41  

Producer (%) 100 90.91 90.00 100 100  91.12% 

Validation overall accuracy = 95.12% 

Kappa coefficient = 93.76% 

  

Built = Built-up areas; Agric = Agricultural land; Veg = Vegetation; Bare = Bare land; Water = Water 

bodies; User = User accuracy; Producer = Producer accuracy. 
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Appendix E Questionnaire Sample Distribution among Political Wards in Akure (N=385) 

LGA Ward Sample 

Size 

LGA Ward Sample 

Size 

LGA Ward Sample 

Size 

Akure North Agamo/Okoeore 7 Akure 

South 

Aponmu 18 Ifedore Ero/Ibuji/Mariwo 10 

Ayede/Ogbese 7 Gbogi/Isikan II 19 Igbara-Oke I 11 

Ayetoro 6 Gbogi/Isikan II 19 Igbara-Oke II 11 

Igbatoro 6 Ijomu/Obanla 19 Ijare I 10 

Igoba/Isinigbo 6 Lisa 19 Ijare II 10 

Iluabo/eleyewo/bolorunduro  7 Oda 19 Obo/Ikota/Ologbosore 10 

Isimi/Irado 6 Odopetu 19 Ilare I 10 

Moferere 6 Oke-Aro/Uro I 19 Ilare II 10 

Oba Ile 6 Oke-Aro/Uro II 19 Ipogun/Ibule 10 

Odo-Ojo/Ijigbo 6 Oshodi/Isolo 19 Isharun/Egiri 10 

Odo-Ara/Owode 6 Owode/Imuagun 19 
  

Oke Iju 6 
  

Total 75 Total 208 Total 102 
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Appendix F Questionnaire Sample Distribution among Political Wards in Owerri Municipal and Owerri North LGAs 

LGA Ward Sample 

Size 

LGA Ward Sample Size 

Owerri 

Municipal 

Aladinma I 9 Owerri North (Orie Uratta) Awaka/Ihitte-Ogada 14 

Aladinma II 9 Naze 14 

Ikenegbu I 9 Egbu 14 

Ikenegbu II 9 Emii 14 

Azuzi I 9 Emekuku I 14 

Azuzi II 9 Emekuku II 14 

Azuzi III 9 Orji 14 

Azuzi IV 9 Ihitta-Oha 14 

GRA 9 Obibi-Uratta I 14 

New Owerri I 8 Obibi-Uratta II 14 

New Owerri II 8 Agbala/Obube/Ulakwo 14 
  

Obibiezena 14 

Total 
 

97 
  

168 

 

 



231 
 

Appendix G Questionnaire Sample Distribution among Political Wards in Owerri West 

(Unuguma) LGA 

LGA Ward Sample Size 

Owerri West 

(Unuguma) 

Avu/Oforola 12 

Umuguma 12 

Okuku 11 

Emeabiam/Okolochi 12 

Eziobodo 12 

Ihiagwa 12 

Nekede 12 

Obinze 12 

Amakohia-Ubi/Ndegwu Ohii 12 

Irete/Orogwe 12 

Total 
 

119 
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Appendix H Questionnaire Sample Distribution among Political Wards in Makurdi 

(Makurdi LGA) (N=384) 

LGA Ward Sample Size 

Makurdi Agan 35 

Ankpa/Wadata 35 

Bar 34 

Central/South Mission 35 

Clerks/Market 35 

Fildi 35 

Mbalagh 35 

Modern Market 35 

North Bank I 35 

North Bank II 35 

Wailomayo 35 

Total  384 
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Appendix I Questionnaire Sample Distribution among Political Wards in Minna (Bosso and 

Chanchaga LGA) 

LGA Ward Sample Size LGA Ward Sample Size 

Bosso 
 

Beji 16 Chanchaga Limawa 'A' 20 

Bosso 

Central I 

17 Limawa 'B' 20 

Bosso 

Central II 

17 Makera 20 

Chanchaga 16 Minna Central 21 

Garatu 16 Minna South 21 

Kampala 16 Nassarawa 'A' 20 

Kodo 16 Nassarawa 'B' 20 

Maikukele 16 Nassarawa 'C' 20 

Maitumbi 16 Sabon Gari 20 

Shata 16 Tudun Wada 

North 

20 

  
Tudun Wada 

South 

20 

Total 162 Total 222 
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Appendix J Questionnaire on Urban Landscape Changes and Ecosystem Services 

Dear Respondent, 

I am Rotimi Obateru, a doctoral research student in Climate Change and Human Habitat at WASCAL CC 

& HH, Federal University of Technology, Minna, Nigeria. The purpose of this questionnaire is to elicit 

information on land use changes and ecosystem services. This information is strictly for academic purposes, 

and not for economic or political gains. The information obtained will be treated with the utmost 

confidentiality. Thank you. 

Section A: Locational characteristics 

The section is to be completed by the research assistant and not for the respondent. 

1. GPS Coordinate: Latitude_______________, Longitude________________ 

2. Locality/community/Ward: _____________________ 

3. Local government area (LGA): ________________________ 

4. City/ecological region: _________________________________ 

Section B: Socioeconomic characteristics of respondents 

Please tick each box and fill in the information as applicable.  

1. Gender  Male [   ] Female [   ] 

2. Age: _________________ 

3. Marital status: Single [   ] Married [   ] Separated [   ] Divorced [   ] Widowed [   ]  

4. Ethnicity: Hausa/Fulani [   ] Yoruba [   ] Igbo [   ] Others, please specify 

____________ 

5. Level of education: No formal education [   ]  Primary [   ] Secondary [   ] Vocational 

education [   ] Tertiary [   ] 

6. Occupation: Student [   ] Artisan [   ] Farmer [   [ Trader/business [   ]

 Civil/public servant [   ]   Private employee [   ] Unemployed [   ] Retired [   ] 

7. Household size: ____________ 

8. For how long have you been residing in this community?  

Less than 1 year [   ] 1 – 2 years [   ] 3 -5 years [   ] Above 5 years [   ] 

9. Building type: Brazilian type (face to face) [   ] Single apartment/self-contain/flat [   ] 

 Bungalow [   ] Duplex [   ] Storey building [   ] Others ______________ 

10. Means of cooking: Firewood/charcoal [   ] Kerosene [   ] Cooking gas [   ]   Others 

_________ 
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Section C: Landscape changes 

Land use refers to man’s use of land. Land cover refers to land that is not dominated by human 

activity 

11. What is the dominant land use or land cover type in your locality? 

Forest vegetation [   ] Grassland/pasture [   ] Agricultural land use [   ] Residential land 

use [   ]   Commercial  land use [   ] Industrial land use [   ] Institutional/educational land 

use [   ]   Political/administrative land use [   ] Bare surface/rock outcrop [   ] 

12. Rate the impact of your economic activity on plants, animals and the general landscape? 

No impact [   ] Slightly positive [   ] Positive [   ]  Slightly negative [   ] Negative 

13. Rate the contribution of the following to land use and land cover changes in your environment. 

 1 (No impact) 2 (Very low) 3 (Low) 4 (High) 5 (Very 

high) 

Farming activities      

Grazing      

Bush burning      

Construction/developmental 

activities 

     

Lumbering/logging      

Firewood/charcoal 

production 

     

Population increase and 

migration 

     

Climate variability/change      

Lack of law enforcement      

 

14. What are the new trends of land use changes in your community within the last one year? 

Agricultural expansion [   ] Industrial expansion [   ]  Residential expansion [   ]

 Construction/development [   ]   

15. Agents behind the new trend in Question 12? 

Individuals [   ] Local people/community [   ] Private investors/estate developers [   ] 

Government [   ] 

16. How concerned are you about the rate of land use and land cover pattern changes in your 

community? 
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Not Concerned [   ] Slightly Concerned [   ] Highly concerned [   ] 

17. What is the status of natural forest or grassland vegetation in your environment? 

Degraded [   ] Improving [   ] No change [   ] 

18. Rate the effort of the government in managing land use changes in your community 

Not effective [   ] Slightly effective [   ] Effective [   ] Highly effective 

 

19. Access to social services: How has the distance to the following changed since you have been 

residing in this community? 

Access to nearest Increased Declined No change 

Portable drinking water    

Health care centre    

Water bodies (e.g. river, lake)    

Bus stop    

Main roads    

Market    

School    

Forest cover/grassland    

Agricultural land    

Distance from residence to town    

 

20. How do you think the environmental problems associated with land use changes in your 

environment can be tackled? 

______________________________________________________________________________

______________________________________________________________________________ 

Section C: Ecosystem services 

Ecosystem services are the goods or services nature produces that are used, either directly or 

indirectly, to benefit people. They are the benefits humans derive from the environment. 

21. How well is your environment providing the following ecosystem services? 

Ecosystem services Not provided Slightly 

provided 

Moderately 

Provided  

Highly 

provided 

I don’t 

know 

Remove pollutants from the 

air we breath  
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Remove pollutants from water      

Reduce storm runoff/flood 

damage 

     

Protection against soil erosion      

Reduce heat and provide 

cooling effect 

     

Mitigate or lessen changes in 

climate 

     

Reduce noise pollution      

Provide habitat for wildlife      

Opportunity for contact with 

nature 

     

Improve community 

appearance and aesthetics 

     

 

22. Rate the performance of your environment since your arrival in this community. 

Ecosystem services Improved  No change Degraded I don’t know 

Remove pollutants from the air we 

breath  

    

Remove pollutants from water     

Reduce storm runoff/flood damage     

Protection against soil erosion     

Reduce heat and provide a cooling 

effect 

    

Mitigate or lessen changes in climate     

Reduce noise pollution     

Provide habitat for wildlife     

Opportunity for contact with nature     

Improve community appearance and 

aesthetics 

    

 

 

Thank you so much for your time and attention. Best regards. 
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Appendix L Publication 2 

 


